STA 711: Probability & Measure Theory
Robert L. Wolpert

4 Expectation & the Lebesgue Theorems

Let X and {X, : n € N} be random variables on the same probability space ({2, F,P). If
Xn(w) = X (w) for each w € Q, does it follow that E[X,,] — E[X]? That is, may we exchange
expectation and limits in the equation
lim E[X,] £ E | lim X,|? (1)
n—oo n—oo

In general, the answer is no. For a simple example take 2 = (0, 1], the unit interval, with
Borel sets F = B(£2) and Lebesgue measure P = A, and for n € N set

Xn(w) =2"1(g0-n)(w). (2)

For each w € €2, X,,(w) = 0 for all n > log,(1/w), so X, (w) — 0 as n — oo for every w, but
E[X,] =1 for all n.

We will want to find conditions that allow us to compute expectations by taking lim-
its, i.e., to force equality in Eqn (??). The two most famous of these conditions are both
attributed to Henri Lebesgue: the Monotone Convergence Theorem (MCT) and the Domi-
nated Convergence Theorem (DCT). We will see stronger results later in the course— but
let’s look at these two now. First, we have to define “expectation.”

4.1 Expectation

Let & be the linear space of real-valued F-measurable random variables taking only finitely-
many values (these are called simple), and let £, be the positive members of £. Each X € £
may be represented in the form

X(w) =Y a;14(w)

Jj=1

for some k € N, {a;} C R and {A,} C F. The representation is unique if we insist that the
{a;} be distinct and nonzero, and that the {A;} be disjoint (why?), in which case X € &,
if and only if each a; > 0. In general we will not need uniqueness of the representation, so
don’t demand that the {a;} be distinct nor that the {A;} be disjoint.

We define the expectation for simple functions in the obvious way:
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For this to be a “definition” we must verify that the right-hand side doesn’t depend on the
(non-unique) representation; that’s easy.

Now we extend the definition of expectation to all non-negative F-measurable random
variables as follows:

Definition 1 The expectation of any nonnegative random variable Y > 0 on (2, F,P) is

EY :=sup{EX: X €&, 6 X<Y}.
The expectation can be evaluated using:

Proposition 1
EY = lim EX,

n—o0

for any simple sequence X,, € £, such that X,(w) Y (w) for each w € €.

Proof. First let’s check that such a sequence of simple random variables exists and that
the limit makes sense. In a homework exercise you're asked to prove that

X, :=min (2", 27"[2"Y])
is simple and nonnegative, and increases monotonically to Y. Thus at least one such sequence

exists.

By monotonicity the expectations E[X,] are increasing, so lim E[X,,] = sup E[X,,] < oo is
just their least upper bound and always exists in the extended positive reals R, = [0, o0].

Now let’s show that EX,, for any such sequence converges to EY. Fix ¢ > 0 and, by the
definition of EY, find X, € &, with X, <Y and EX, > EY — e. Since X, € & takes only
finitely many values, it must be bounded for all w by 0 < X, < B for some 0 < B < o0.
Because X, < X1 and X,,(w) — Y (w) > X.(w) as n — oo for each w € €, the events

A, ={w: X,(w) < Xi(w) — €}

are decreasing (i.e., A, D A1) with NA, = 0, so P[A,] — 0. Fix N, large enough that
P[A,] <¢/B for all n > N,. Then for n > N,,

EX, =EX,—e+E(X,— X, +¢)
=EX, —e+E(X, — Xs+¢)14, + E(X,, — Xs + €)1 4
>EX, —e+E(X, — X, +¢€)ly4,

since (X,, — X +¢€) > 0 on A¢ and, since X,, + ¢ > 0,

2 EX* — € — EX*]-An
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Since X, < B,
EX, >EX,—¢— BP[A,] > EX, —2¢ > EY — 3e.
Thus, since X,, <Y and X,, € &,
EX, <EY <EX, + 3¢

for every € > 0 and n > N, so EX,, — EY as claimed. 0

Now that we have EX well-defined for random variables X > 0 we may extend the
definition of expectation to all (not necessarily non-negative) RVs X by

EX :=EX, —EX_

as long as either of the nonnegative random variables X, := (X vV 0), X_ := (=X V 0) has
finite expectation. If both EX, and EX_ are infinite, we must leave EX undefined. If both
are finite, call X integrable and note that

|EX| <EX, +EX_ =E[X|.

4.1.1 Properties of Expectation

Expectation is a linear operation in the sense that, if a1, as € R are two constants and X, X5
are two random variables on (€, F,P), then

E[ale + a2X2] = alE[Xl] + CLQE[XQ]

provided the right-hand side is well-defined (not of the form oo — oo). It follows that it
respects monotonicity, in the sense that X; < Xy = E[X;] < E[X,] and, as special cases,
that |[E[X]| < E[|X]|] and X >0 = E[X] > 0. We will encounter many more identities and
inequalities for expectations in Section (?7).

Expectation is unaffected by changes on null-sets— if P[X # Y| = 0, then EX = EY.
How would you prove this?

4.1.2 A Small Extension

The definition of expectation extends without change to random variables X that take values
in the extended real numbers R := [—00, c0]. Obviously EX = +oc if P[X = +o00] > 0 and
P[X = —o0] =0, EX = —o0 if P[X = 400| =0 and P[X = —o0] > 0, and EX is undefined
if both P[X = +o0] > 0 and P[X = —o0] > 0. Otherwise, if P[|X| = oco] = 0, then X (and
any function of X) have the same expectation as if X were replaced by the real-valued RV
X* defined to be X (w) when | X (w)| < co and otherwise zero, since then P[X # X*| = 0.

With this extension, we can always consider the expectations of quantities like lim sup X,
and lim inf X,,, which might take on the values +oo for some RV sequences {X,,}.
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4.1.3 Lebesgue Summability Counterexample

Does the alternating sum

1
1—=

1 (_1)k+1
573

1
Z_i_...:% - (3)

converge? Let’s look closely— the answer depends on what you mean by “converge.” First,
for any p € R and n € N define

Sm =Yk f<n>:/"x—pdx:{"1f;1 b1
k=1 1

logn  p=1

For p < 0 the function 7" is increasing on R, so I(n) +1 < S(n) < I(n+ 1) and so

1-p " nt-r—1
p<0:>n7+p§2k:‘p<(n+) ,
I—p — I—-p

and S(n) oc n'™P — 0o as n — oo.
For p > 0 the function x7? is decreasing on Ry, so I(n+1) < S(n) < I(n) 4+ 1 and so

n

(n+1)7—-1 . ntP—p
p>0= < kP < —=
1-p ; 1-p

for p # 1. For 0 < p < 1 we again have S(n) oc n'™? — oo as n — oo, but for p > 1
the series converges to some limit S(oco) € (1,p)/(p — 1). For example, with p = 2 we have
S(o0) = 72/6 &~ 1.644934 € (1,2). For any p > 1 the limit is called the Riemann-zeta
function S(oc0) = ((p).

For p = 1 we again have divergence, with bounds
log(n+1) < S(n) <log(n) + 1,

so the harmonic series S(n) = >_}_ k™' =< logn. In fact [S(n) — logn] — 7. converges as
n — 00, to the Euler-Mascheroni constant v, ~ 0.577215665.

Thus in the Lebesque sense, the alternating series of Eqn (??) does not converge, since
its negative and positive parts'

S_(n):= ' % Si(n) = Z le_ 1
1 1
= S(n/2) = 8(n) = 55(n/2)
— %[]og(n/Q) + 7] + o(1) = %[log@ n) + 7] +o(1)

!The “little oh” notation “o(1)” means that any remaining terms converge to zero as n — co. More
generally, “f = o(g)” means that (Ve > 0)(3N. < co)(Vx > N¢) |f(x)| < eg(x)— roughly, that f(z)/g(x) —
0.
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each approach oo as n — oo. Notice however that the even partial sums are

S E (D (5D (G- - e

k=1 Jj=1

bounded above by 72/8 for all n (why?), making the example interesting. More precisely,
the difference

n oo 1\k+1
> ) - s =

k=1

[log(2n) — log(n/2)] + o(1)

N —

converges to log2 as n — oo. What do you think happens with >"7_, & /n, for independent
random variables & = 41 with probability 1/2 each?

4.2 Lebesgue’s Convergence Theorems

Theorem 1 (MCT) Let X and X,, > 0 be random variables (not necessarily simple) for
which X, (w) 7 X (w) for each w € Q. Then

lim E[X,] = EX =E [ lim X,],

n—oo n—0o0

i.e., Eqn (??) is satisfied.? If E|X| < oo, then also E|X,, — X| — 0.

For the proof we must find for each n an approximating sequence v < &, such that
v, X, as m — oo and, from it, construct a single sequence
Zpy = max Y™ € &,
1<n<m
that satisfies Z,,, < X, for each m (this is true because, for each n < m, nym) < X, < X,)
and Z,, / X as m — oo (to see this, take w € Q and € > 0; first find n such that

X,(w) > X(w) — ¢, then find m > n such that ¥;'™(w) > X,(w) — ¢, and verify that
Zm(w) > X (w) — 2¢), and verify that

lim E[X,] > lim E[Z,] =EX > lim E[X,].

n—oo m—0o0 n—o0

Theorem 2 (Fatou’s Lemma) Let X,, > 0 be random variables. Then

E [lim inf Xn] < liminf E [X,,] .

n—o0 n—oo

2In fact it is enough to assume that P[X,, > 0] = 1 and P[X,, / X] = 1, i.e., that X,, are nonnegative
and increase to X outside of a null set NV € F, since X,,1nyc and X1y have the same expectations as X,
and X.
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To prove this, just set Y,, := inf,,,>,, X;,. Then Y,, — Y := liminf X, by definition, and {Y,,}
is increasing, so the MCT and the inequality Y,, < X, give

E [hm inf Xn} —E [lim Yn} — E[Y] = liminf E[Y,] < liminf E [X,,]

n—o0 n—oo n—o0 n—oo

Notice that equality may fail, as in the example of Eqn (?7). The condition X,, > 0 isn’t
entirely superfluous, but it can be weakened to X,, > Z for any integrable random variable
Z (i.e., one with E|Z] < 00).

For indicator random variables X,, := 14, of events {A,}, since EX,, = P(A,), Fatou’s
lemma asserts that

n—oo n—oo n—oo n—oo

P <lim inf An) < liminf P(A,) < limsupP(A,) <P <lim sup An)

Corollary 1 Let {X,}, Z be random variables on (Q, F,P) with X,, > Z and E|Z| < oc.
Then
E [lim inf Xn] < liminfE[X,].

n—o0 n—oo

That is, we may weaken the condition “X, > 0”7 to “X,, > Z € L;” in the statement of
Fatou’s lemma. To prove this, apply Fatou to (X,, — Z) and add EZ to both sides.

Corollary 2 Let {X,}, Z be random variables on (Q, F,P) with X,, < Z and E|Z| < 0.
Then

n—o0 n—oo

E [lim sup Xn} > limsup E [X,,].

To prove this, use the identity —(lim sup a,,) = liminf(—a,) (true for any real numbers {a,})
and apply Fatou’s lemma to the nonnegative sequence (Z — X,,).

Finally we have the most important result of this section:

Theorem 3 (DCT) Let X and X,, be random variables (not necessarily simple or positive)
for which P[X,, — X| =1, and suppose that P[|Xn| < Y] =1 for some integrable random
variable Y with EY < oo. Then

lim E[X,]| = EX =E [lim Xn] ,

n—oo n—0o0

i.e., Eqn (??) is satisfied if {X,} is “dominated” by Y € L;. Moreover, E| X, — X| — 0.

Proof. To show this just apply Fatou Corollaries 7?7 and ?? with Z = —Y and Z =Y,
respectively:

EX = E[liminf X,,] <liminf E [X,,]
<limsup E[X,] < E[limsup X,,| = EX
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For the “moreover” part, apply DCT separately to the positive and negative parts of X,
(X —X)y =0V (X,—X)and (X,, — X)_ :=0V (X — X,,); each is dominated by 2Y" and
converges to zero as n — co. Then use

E|X, — X| =E(X, — X); +E(X, — X)_ = 0.
a

We will see later that the pointwise convergence condition “(Vw € Q) X, (w) = X(w)” in
the statements of both Theorems 7?7 and 7?7 can be weakened to convergence in probability,
“(Ve > 0) P[| X, — X| > ¢ — 0.7

5 L, Spaces and some Expectation Inequalities

Fix a probability space (€2, F,P) and, for any number p > 0, let “L,” (or “L,(2, F,P)”,
pronounced “ell pee”) denote the vector space of real-valued (or sometimes complex-valued)
random variables X for which E|X|P < co. Note that this is a vector space, since

e Forany X € L, and a € R,

E‘aX}p = |al? E|X|P < 0.

e For any XY € L,,

EIX + Y|P <E{X|+ Y|}
< E{2max(|X], [Y])}" = 27 E {max(|X ", [Y']")}
<2PE{|X|P+ Y|P} =27 {E|IX|P+E|Y|’} < c0.
and hence aX € L, and X +Y € L, it XY € L, DBy far the two most important
cases are p = 1 and p = 2. A random variable X is called “integrable” if E|X| < oo or,
equivalently, if X € Ly; it is called “square integrable” if E|X|*> < oo or, equivalently, if

X € L,. Integrable random variables have well-defined means; square-integrable random
variables have, in addition, finite variance.

By Minkowski’s Inequality (see item (?7) below), the function
X == {ELX [P}

is a norm on the space L, for p > 1, inducing a metric d(X,Y) = || X — Y|, that obeys the
three rules (for every X, Y, Z):

1. d(X,Y) = d(Y, X);
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2. d(X,Y)=0if and only if X =Y;?
3. d(X,7) < d(X,Y) +d(Y, 2).

including the triangle inequality. We can show that L, is a complete separable metric space
in this metric (what does “complete” mean? Why “separable”? What do we need to show
to prove each of these?) For 0 < p < 1 the space L, is still a complete separable metric
space, but (because ¢(x) = |z|P isn’t convex for p < 1) || X —Y||, doesn’t satisfy the triangle
inequality and so isn’t a metric— but ||X — Y|[? = E[X — Y|P 4s a metric for 0 < p < 1,
under which L, is a complete separable metric space. By Jensen’s Inequality (see item
(??) or Theorem ?? below) for the convex function ¢(z) = |z|%/?,

0<p<g<oo=|X][,={EXP}" < {ELX|}" = | X]],

and hence L, D L, for all 0 < p < ¢ < oc.

It is common to treat any two random variables X, Y for which P[X = Y] as “equivalent,”
and regard L, not as a space of functions, but rather as a space of equivalence classes of
functions where X =Y if and only if P[X = Y] = 1. Distances and norms in L,, depend only
on the equivalence class. The distinction is only important when we assert the uniqueness
of random variables with some specific property; what we mean then is uniqueness up to
equivalence.

For example, by Holder’s Inequality (item (??) below), for each Y € L, the linear func-
tional ¢y defined on L, by
X — ly[X] := E[XY]

is continuous if 1 < p < oo and % + % = 1. It happens that these are the only continuous
linear functionals on L,, so L, and L, are mutually dual Banach spaces and, in particular,
Ly is a (self-dual) real Hilbert space with inner product (X,Y) = E[XY].

Call a random variable X “essentially bounded” if there exists a finite number 0 < B < 0o
such that P[|X| < B] =1, and in that case let

| Xl :=inf {B>0: P[|X|<B] =1}

denote the infimum of the constants B with this property (or infinity if no such B exists).
Since ||.X ||, is non-decreasing in p € (0, 00) for each random variable X, the limit of ||.X ||, as
p — oo always exists, and is identical to the supremum sup,,_ || X||, = lim,_ [| X|[,. One
can show (it’s a good exercise, you should do it) that this limit is identical to || X ||, i-e€.,
that

sup X, = lim (X, = [1X

p<oo pP—00

The space Ly, = {X : [|X|leo < oo} of essentially bounded random variables is also a
complete metric space, but except in some trivial cases it isn’t separable. Can you prove

3Strictly speaking, d is only a metric if we identify any two random variables X,Y with d(X,Y) = 0,
i.e., if we regard L, as a space of equivalence classes [X] = {Y : Q@ = R: P[X #Y] =0} of p-integrable
functions; see paragraph below.
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Lo (Q, F,P) isn’t separable for Q = (0, 1], F = B, and P = A? What if instead P has finite
or countable support {w;}, with P[{w;}] = p; > 0, > p; = 17 For X ~ No(0,1), what is
| X ||o? How about X ~ Bi(n,p)? Or X ~ Un(a,b)?

Theorem 4 (Jensen’s Inequality) Let ¢ be conver and X € Ly integrable. Then
p(ELX]) < E[p(X)].

The cleanest proof I know of this relies on finding a tangent to the graph of ¢ at the point
w = E[X]. To start, note by convexity that for any a < b < ¢, ¢(b) lies below the value at
x = b of the linear function taking the same values as ¢(x) at © = a and x = ¢

c—b b—a

c—a(p(a)_l_c—a

p(b) < p(c)

Subtracting ¢(b) and then rearranging terms,

0< S0 lp(a) — (0] + - Tle) — o)
p(0) —pla) _ ¢lc) — p(b)
b—a - c—b
so any line through (b, ¢(b)) with slope X in the range
() = s w(bl)) - f(a) <A <inf s@(Ci - b@(b) )

lies below the graph of ¢(x) (draw a picture). Now let b = p and let A be any number in
that interval (this will be the derivative A = ¢'(u) if ¢ is differentiable at p, but ¢ might
have a “corner” at p like |z| does at zero). The line x ~» (i) + M@ — p) through (u, (1))
with slope A lies below the graph of ¢(x) and touches the graph at x = p (draw it!), so

o(p) = Elp(p) + MX — )] < E[p(X)]

as claimed. Notice we didn’t have to bound ¢ above or below, or insist that ¢(X) € L.

A Note on Notation

The distribution px of a real-valued random variable X on a probability space (2, F,P) is
completely determined by the Distribution Function F(z) = pux(—oo,2z] = P[X < z], and
the expectation E[g(X)] for Borel functions g : R — R has been written in many different
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ways over the centuries. Some of these include:

Elg(X)] = [ 9(X()P(aw) = [ 9(x) P

Q

~ [s@nstan) = [ gaux
:/Rg(x) Fy(dz) :/Rngx szg(:c) dFx(z)

This last one is “Stieltjes” notation, from an early definition of the Riemann integral of a
continuous func. g as f;g(x) dFx(x) = lim, ZOSKng(x,-)[FX (Tip1) — Fx(z;)], with x; =
a+i(b—a)/n. All reduce to [ g(z)fx(z)dx for AC Fx, with fy(z) := dFx(z)/dz = Fi(x).
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Miscellaneous Integral Identities and Inequalities

1.

If px is the distribution of X and if g is a measurable real-valued function on R,
then Eg(X) := [, g(X(w))P = [z 9(x) px(dz) if either side exists. In particular,
p:=EX = [z pux(dr) and 0? := E(X p)?* = [(z—p)? px(dz) can be calculated using
sums and PMFs if X is discrete, or integrals and pdfs if it’s absolutely continuous.

. For any p > 0, E|X|? = [ pa?'P[|X| > 2] dz and E|X|? < oo & Y7 nP'P[|X]| >

n] < oo. The case p = 1 is easiest and most important: if S := 3 > P[|X| > n| < oo,
then E| X | < S < E|X|+1. If X takes on only nonnegative integer values then EX = §.

Markov’s Inequality: If ¢ is positive and nondecreasing, then
PIX > u] < E[p(X)]/e(u). In particular P[|X| > u] < || X]|,/u”, P[|X]| > u] <
(02 4+ p?)u?, and (Vt > 0), P[X > u] < M(t) e ™ for the MGF M (t) := Eexp(tX).

. Chebychev’s Inequality: Applying Markov’s inequality to |z — u|? gives Chebychev’s

Inequality, P[|X — p| > ko] < 5. A one-sided version is also available: P[X > u] <

ﬁ (pf: P[(X —pu+1t) > (u— p+t)] <7; optimize over t > u — u).

Jensen’s Inequality: Let ¢(x) be a convex function on R and, X € L;(Q, F,P).
Then ¢(E[X]) < E[¢(X)]. Examples: p(z) = |z|P, p > 1; ¢(x) = €; ¢(x) = [0V z].
(Introduce L, D L,). The equality is strict if ¢(-) is strictly convex and X has a
non-degenerate distribution. See Theorem ?? on p. ?? for a proof.

Holder’s Inequality: Let » > 1 and p,q > 1 with % —i—% = % Then || XY,
X1 Y7 llg- (P TE [ X, = ([Yly = 1, then [XY]" = exp{7log | X]" + {log [Y|7}
{21 X7+ £[Y'[?}). The special case of p = ¢ =2, r =1 is the famous:
Cauchy-Schwartz Inequality: EXY < E|XY| < ,/E[X?] E[Y?].

IAIA

Minkowski’s Inequality: Let 1 < p < oo and let X,Y € L,(2,F,P). Then the
norm || X||, := (E|X|5”)% obeys the triangle inequality on L,(€2, F,P):

X+ Yl < [1X [l + 1Yl
Pf: E|X + Y|P <E(|X|+ |Y])|X + Y|?/4, then apply Holder. What if p < 17

Hoeffding’s Inequality: If {X;} are independent and bounded above and below
individually by (3 {a;,b;}) s.t. Pla; < X; < bj] = 1, then (Ve > 0), S, == Y7, X
satisfies P[S,, — ES, > ¢] <exp (—2¢/ 37 |b; — a;|?). If X; are iid Wlth ||X oo < B,
then P[(X, — p) > € < e /5. What bound do you get for Bernoulli RVs on
P[| X, — p| > €]? The proof requires independence, so we’ll look at it next week.
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