
STA 711: Probability & Measure Theory
Robert L. Wolpert

4 Expectation & the Lebesgue Theorems

Let X and {Xn : n ∈ N} be random variables on the same probability space (Ω,F ,P). If
Xn(ω) → X(ω) for each ω ∈ Ω, does it follow that E[Xn] → E[X ]? That is, may we exchange
expectation and limits in the equation

lim
n→∞

E [Xn]
?
= E

[

lim
n→∞

Xn

]

? (1)

In general, the answer is no. For a simple example take Ω = (0, 1], the unit interval, with
Borel sets F = B(Ω) and Lebesgue measure P = λ, and for n ∈ N set

Xn(ω) = 2n 1(0,2−n](ω). (2)

For each ω ∈ Ω, Xn(ω) = 0 for all n > log2(1/ω), so Xn(ω) → 0 as n → ∞ for every ω, but
E[Xn] = 1 for all n.

We will want to find conditions that allow us to compute expectations by taking lim-
its, i.e., to force equality in Eqn (??). The two most famous of these conditions are both
attributed to Henri Lebesgue: the Monotone Convergence Theorem (MCT) and the Domi-
nated Convergence Theorem (DCT). We will see stronger results later in the course— but
let’s look at these two now. First, we have to define “expectation.”

4.1 Expectation

Let E be the linear space of real-valued F -measurable random variables taking only finitely-
many values (these are called simple), and let E+ be the positive members of E . Each X ∈ E
may be represented in the form

X(ω) =
k

∑

j=1

aj1Aj
(ω)

for some k ∈ N, {aj} ⊂ R and {Aj} ⊂ F . The representation is unique if we insist that the
{aj} be distinct and nonzero, and that the {Aj} be disjoint (why?), in which case X ∈ E+
if and only if each aj ≥ 0. In general we will not need uniqueness of the representation, so
don’t demand that the {aj} be distinct nor that the {Aj} be disjoint.

We define the expectation for simple functions in the obvious way:

EX =
k

∑

j=1

ajP(Aj).

1



STA 711 Weeks 4 & 5 R L WolpertSTA 711 Weeks 4 & 5 R L WolpertSTA 711 Weeks 4 & 5 R L Wolpert

For this to be a “definition” we must verify that the right-hand side doesn’t depend on the
(non-unique) representation; that’s easy.

Now we extend the definition of expectation to all non-negative F -measurable random
variables as follows:

Definition 1 The expectation of any nonnegative random variable Y ≥ 0 on (Ω,F ,P) is

EY := sup {EX : X ∈ E+, X ≤ Y } .

The expectation can be evaluated using:

Proposition 1
EY = lim

n→∞
EXn

for any simple sequence Xn ∈ E+ such that Xn(ω) ր Y (ω) for each ω ∈ Ω.

Proof. First let’s check that such a sequence of simple random variables exists and that
the limit makes sense. In a homework exercise you’re asked to prove that

Xn := min
(

2n, 2−n⌊2nY ⌋
)

is simple and nonnegative, and increases monotonically to Y . Thus at least one such sequence
exists.

By monotonicity the expectations E[Xn] are increasing, so limE[Xn] = supE[Xn] ≤ ∞ is
just their least upper bound and always exists in the extended positive reals R̄+ = [0,∞].

Now let’s show that EXn for any such sequence converges to EY . Fix ǫ > 0 and, by the
definition of EY , find X∗ ∈ E+ with X∗ ≤ Y and EX∗ ≥ EY − ǫ. Since X∗ ∈ E takes only
finitely many values, it must be bounded for all ω by 0 ≤ X∗ ≤ B for some 0 < B < ∞.
Because Xn ≤ Xn+1 and Xn(ω) → Y (ω) ≥ X∗(ω) as n → ∞ for each ω ∈ Ω, the events

An = {ω : Xn(ω) < X∗(ω)− ǫ}

are decreasing (i.e., An ⊃ An+1) with ∩An = ∅, so P[An] → 0. Fix Nǫ large enough that
P[An] ≤ ǫ/B for all n ≥ Nǫ. Then for n ≥ Nǫ,

EXn = EX∗ − ǫ+ E(Xn −X∗ + ǫ)

= EX∗ − ǫ+ E(Xn −X∗ + ǫ)1An
+ E(Xn −X∗ + ǫ)1Ac

n

≥ EX∗ − ǫ+ E(Xn −X∗ + ǫ)1An

since (Xn −X∗ + ǫ) ≥ 0 on Ac
n and, since Xn + ǫ ≥ 0,

≥ EX∗ − ǫ− EX∗1An
.
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Since X∗ ≤ B,

EXn ≥ EX∗ − ǫ− B P[An] ≥ EX∗ − 2ǫ ≥ EY − 3ǫ.

Thus, since Xn ≤ Y and Xn ∈ E+,

EXn ≤ EY ≤ EXn + 3ǫ

for every ǫ > 0 and n ≥ Nǫ, so EXn → EY as claimed.

Now that we have EX well-defined for random variables X ≥ 0 we may extend the
definition of expectation to all (not necessarily non-negative) RVs X by

EX := EX+ − EX−

as long as either of the nonnegative random variables X+ := (X ∨ 0), X− := (−X ∨ 0) has
finite expectation. If both EX+ and EX− are infinite, we must leave EX undefined. If both
are finite, call X integrable and note that

∣

∣EX
∣

∣ ≤ EX+ + EX− = E|X|.

4.1.1 Properties of Expectation

Expectation is a linear operation in the sense that, if a1, a2 ∈ R are two constants and X1, X2

are two random variables on (Ω,F ,P), then

E[a1X1 + a2X2] = a1E[X1] + a2E[X2]

provided the right-hand side is well-defined (not of the form ∞ − ∞). It follows that it
respects monotonicity, in the sense that X1 ≤ X2 ⇒ E[X1] ≤ E[X2] and, as special cases,
that

∣

∣E[X ]
∣

∣ ≤ E
[

|X|
]

and X ≥ 0 ⇒ E[X ] ≥ 0. We will encounter many more identities and
inequalities for expectations in Section (??).

Expectation is unaffected by changes on null-sets— if P[X 6= Y ] = 0, then EX = EY .
How would you prove this?

4.1.2 A Small Extension

The definition of expectation extends without change to random variables X that take values
in the extended real numbers R̄ := [−∞,∞]. Obviously EX = +∞ if P[X = +∞] > 0 and
P[X = −∞] = 0, EX = −∞ if P[X = +∞] = 0 and P[X = −∞] > 0, and EX is undefined
if both P[X = +∞] > 0 and P[X = −∞] > 0. Otherwise, if P[|X| = ∞] = 0, then X (and
any function of X) have the same expectation as if X were replaced by the real-valued RV
X∗ defined to be X(ω) when |X(ω)| < ∞ and otherwise zero, since then P[X 6= X∗] = 0.

With this extension, we can always consider the expectations of quantities like lim supXn

and lim infXn, which might take on the values ±∞ for some RV sequences {Xn}.
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4.1.3 Lebesgue Summability Counterexample

Does the alternating sum

1−
1

2
+

1

3
−

1

4
+ · · · =

∑

k∈N

(−1)k+1

k
(3)

converge? Let’s look closely— the answer depends on what you mean by “converge.” First,
for any p ∈ R and n ∈ N define

S(n) =
n

∑

k=1

k−p I(n) =

∫ n

1

x−p dx =

{

n1−p−1
1−p

p 6= 1

logn p = 1
.

For p < 0 the function x−p is increasing on R+, so I(n) + 1 ≤ S(n) < I(n + 1) and so

p < 0 ⇒
n1−p + p

1− p
≤

n
∑

k=1

k−p <
(n+ 1)1−p − 1

1− p
,

and S(n) ∝ n1−p → ∞ as n → ∞.

For p > 0 the function x−p is decreasing on R+, so I(n+ 1) < S(n) ≤ I(n) + 1 and so

p > 0 ⇒
(n + 1)1−p − 1

1− p
<

n
∑

k=1

k−p ≤
n1−p − p

1− p

for p 6= 1. For 0 < p < 1 we again have S(n) ∝ n1−p → ∞ as n → ∞, but for p > 1
the series converges to some limit S(∞) ∈ (1, p)/(p− 1). For example, with p = 2 we have
S(∞) = π2/6 ≈ 1.644934 ∈ (1, 2). For any p > 1 the limit is called the Riemann-zeta
function S(∞) = ζ(p).

For p = 1 we again have divergence, with bounds

log(n + 1) < S(n) ≤ log(n) + 1,

so the harmonic series S(n) =
∑n

k=1 k
−1 ≍ log n. In fact [S(n) − log n] → γe converges as

n → ∞, to the Euler-Mascheroni constant γe ≈ 0.577215665.

Thus in the Lebesgue sense, the alternating series of Eqn (??) does not converge, since
its negative and positive parts1

S−(n) :=

n/2
∑

j=1

1

2j
S+(n) :=

n/2
∑

j=1

1

2j − 1

=
1

2
S(n/2) = S(n)−

1

2
S(n/2)

=
1

2
[log(n/2) + γe] + o(1) =

1

2
[log(2n) + γe] + o(1)

1The “little oh” notation “o(1)” means that any remaining terms converge to zero as n → ∞. More
generally, “f = o(g)” means that (∀ǫ > 0)(∃Nǫ < ∞)(∀x > Nǫ) |f(x)| ≤ ǫg(x)— roughly, that f(x)/g(x) →
0.
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each approach ∞ as n → ∞. Notice however that the even partial sums are

2n
∑

k=1

(−1)k+1

k
=

(

1

1
−

1

2

)

+

(

1

3
−

1

4

)

+

(

1

5
−

1

6

)

+ · · · =
n

∑

j=1

1

(2j − 1)(2j)
,

bounded above by π2/8 for all n (why?), making the example interesting. More precisely,
the difference

n
∑

k=1

(−1)k+1

k
= S+(n)− S−(n) =

1

2

[

log(2n)− log(n/2)
]

+ o(1)

converges to log 2 as n → ∞. What do you think happens with
∑n

k=1 ξk/n, for independent
random variables ξk = ±1 with probability 1/2 each?

4.2 Lebesgue’s Convergence Theorems

Theorem 1 (MCT) Let X and Xn ≥ 0 be random variables (not necessarily simple) for
which Xn(ω) ր X(ω) for each ω ∈ Ω. Then

lim
n→∞

E [Xn] = EX = E

[

lim
n→∞

Xn

]

,

i.e., Eqn (??) is satisfied.2 If E|X| < ∞, then also E|Xn −X| → 0.

For the proof we must find for each n an approximating sequence Y
(m)
n ⊂ E+ such that

Y
(m)
n ր Xn as m → ∞ and, from it, construct a single sequence

Zm := max
1≤n≤m

Y (m)
n ∈ E+

that satisfies Zm ≤ Xm for each m (this is true because, for each n ≤ m, Y
(m)
n ≤ Xn ≤ Xm)

and Zm ր X as m → ∞ (to see this, take ω ∈ Ω and ǫ > 0; first find n such that

Xn(ω) ≥ X(ω) − ǫ, then find m ≥ n such that Y
(m)
n (ω) ≥ Xn(ω) − ǫ, and verify that

Zm(ω) ≥ X(ω)− 2ǫ), and verify that

lim
n→∞

E[Xn] ≥ lim
m→∞

E[Zm] = EX ≥ lim
n→∞

E[Xn].

Theorem 2 (Fatou’s Lemma) Let Xn ≥ 0 be random variables. Then

E

[

lim inf
n→∞

Xn

]

≤ lim inf
n→∞

E [Xn] .

2In fact it is enough to assume that P[Xn ≥ 0] = 1 and P[Xn ր X ] = 1, i.e., that Xn are nonnegative
and increase to X outside of a null set N ∈ F , since Xn1Nc and X1Nc have the same expectations as Xn

and X .
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To prove this, just set Yn := infm≥nXm. Then Yn → Y := lim infXn by definition, and {Yn}
is increasing, so the MCT and the inequality Yn ≤ Xn give

E

[

lim inf
n→∞

Xn

]

:= E

[

lim
n→∞

Yn

]

= E [Y ] = lim inf
n→∞

E [Yn] ≤ lim inf
n→∞

E [Xn]

Notice that equality may fail, as in the example of Eqn (??). The condition Xn ≥ 0 isn’t
entirely superfluous, but it can be weakened to Xn ≥ Z for any integrable random variable
Z (i.e., one with E|Z| < ∞).

For indicator random variables Xn := 1An
of events {An}, since EXn = P(An), Fatou’s

lemma asserts that

P

(

lim inf
n→∞

An

)

≤ lim inf
n→∞

P(An) ≤ lim sup
n→∞

P(An) ≤ P

(

lim sup
n→∞

An

)

Corollary 1 Let {Xn}, Z be random variables on (Ω,F ,P) with Xn ≥ Z and E|Z| < ∞.
Then

E

[

lim inf
n→∞

Xn

]

≤ lim inf
n→∞

E [Xn] .

That is, we may weaken the condition “Xn ≥ 0” to “Xn ≥ Z ∈ L1” in the statement of
Fatou’s lemma. To prove this, apply Fatou to (Xn − Z) and add EZ to both sides.

Corollary 2 Let {Xn}, Z be random variables on (Ω,F ,P) with Xn ≤ Z and E|Z| < ∞.
Then

E

[

lim sup
n→∞

Xn

]

≥ lim sup
n→∞

E [Xn] .

To prove this, use the identity −(lim sup an) = lim inf(−an) (true for any real numbers {an})
and apply Fatou’s lemma to the nonnegative sequence (Z −Xn).

Finally we have the most important result of this section:

Theorem 3 (DCT) Let X and Xn be random variables (not necessarily simple or positive)
for which P[Xn → X ] = 1, and suppose that P

[

|Xn| ≤ Y
]

= 1 for some integrable random
variable Y with EY < ∞. Then

lim
n→∞

E [Xn] = EX = E

[

lim
n→∞

Xn

]

,

i.e., Eqn (??) is satisfied if {Xn} is “dominated” by Y ∈ L1. Moreover, E|Xn −X| → 0.

Proof. To show this just apply Fatou Corollaries ?? and ?? with Z = −Y and Z = Y ,
respectively:

EX = E [lim infXn] ≤ lim inf E [Xn]

≤ lim sup E [Xn] ≤ E [lim supXn] = EX
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For the “moreover” part, apply DCT separately to the positive and negative parts of X ,
(Xn −X)+ := 0∨ (Xn −X) and (Xn −X)− := 0∨ (X −Xn); each is dominated by 2Y and
converges to zero as n → ∞. Then use

E|Xn −X| = E(Xn −X)+ + E(Xn −X)− → 0.

We will see later that the pointwise convergence condition “(∀ω ∈ Ω) Xn(ω) → X(ω)” in
the statements of both Theorems ?? and ?? can be weakened to convergence in probability,
“(∀ǫ > 0) P[|Xn −X| > ǫ] → 0.”

5 Lp Spaces and some Expectation Inequalities

Fix a probability space (Ω,F ,P) and, for any number p > 0, let “Lp” (or “Lp(Ω,F ,P)”,
pronounced “ell pee”) denote the vector space of real-valued (or sometimes complex-valued)
random variables X for which E|X|p < ∞. Note that this is a vector space, since

• For any X ∈ Lp and a ∈ R,

E
∣

∣aX
∣

∣

p
= |a|p E|X|p < ∞.

• For any X, Y ∈ Lp,

E|X + Y |p ≤ E {|X|+ |Y |}p

≤ E {2max(|X|, |Y |)}p = 2p E {max(|X|p, |Y |p)}

≤ 2p E {|X|p + |Y |p} = 2p {E|X|p + E|Y |p} < ∞.

and hence aX ∈ Lp and X + Y ∈ Lp if X, Y ∈ Lp. By far the two most important
cases are p = 1 and p = 2. A random variable X is called “integrable” if E|X| < ∞ or,
equivalently, if X ∈ L1; it is called “square integrable” if E|X|2 < ∞ or, equivalently, if
X ∈ L2. Integrable random variables have well-defined means; square-integrable random
variables have, in addition, finite variance.

By Minkowski’s Inequality (see item (??) below), the function

‖X‖p := {E|X|p}1/p

is a norm on the space Lp for p ≥ 1, inducing a metric d(X, Y ) = ‖X − Y ‖p that obeys the
three rules (for every X, Y, Z):

1. d(X, Y ) = d(Y,X);
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2. d(X, Y ) = 0 if and only if X = Y ;3

3. d(X,Z) ≤ d(X, Y ) + d(Y, Z).

including the triangle inequality. We can show that Lp is a complete separable metric space
in this metric (what does “complete” mean? Why “separable”? What do we need to show
to prove each of these?) For 0 < p < 1 the space Lp is still a complete separable metric
space, but (because ϕ(x) = |x|p isn’t convex for p < 1) ‖X−Y ‖p doesn’t satisfy the triangle
inequality and so isn’t a metric— but ‖X − Y ‖pp = E|X − Y |p is a metric for 0 < p < 1,
under which Lp is a complete separable metric space. By Jensen’s Inequality (see item
(??) or Theorem?? below) for the convex function ϕ(x) = |x|q/p,

0 < p < q < ∞ ⇒ ‖X‖p = {E|X|p}1/p ≤ {E|X|q}1/q = ‖X‖q

and hence Lp ⊃ Lq for all 0 < p < q < ∞.

It is common to treat any two random variables X, Y for which P[X = Y ] as “equivalent,”
and regard Lp not as a space of functions, but rather as a space of equivalence classes of
functions where X ≡ Y if and only if P[X = Y ] = 1. Distances and norms in Lp depend only
on the equivalence class. The distinction is only important when we assert the uniqueness
of random variables with some specific property; what we mean then is uniqueness up to
equivalence.

For example, by Hölder’s Inequality (item (??) below), for each Y ∈ Lq the linear func-
tional ℓY defined on Lp by

X 7→ ℓY [X ] := E[XY ]

is continuous if 1 < p < ∞ and 1
p
+ 1

q
= 1. It happens that these are the only continuous

linear functionals on Lp, so Lp and Lq are mutually dual Banach spaces and, in particular,
L2 is a (self-dual) real Hilbert space with inner product 〈X, Y 〉 = E[XY ].

Call a random variableX “essentially bounded” if there exists a finite number 0 ≤ B < ∞
such that P[|X| ≤ B] = 1, and in that case let

‖X‖∞ := inf
{

B ≥ 0 : P
[

|X| ≤ B
]

= 1
}

denote the infimum of the constants B with this property (or infinity if no such B exists).
Since ‖X‖p is non-decreasing in p ∈ (0,∞) for each random variable X , the limit of ‖X‖p as
p → ∞ always exists, and is identical to the supremum supp<∞ ‖X‖p = limp→∞ ‖X‖p. One
can show (it’s a good exercise, you should do it) that this limit is identical to ‖X‖∞, i.e.,
that

sup
p<∞

‖X‖p = lim
p→∞

‖X‖p = ‖X‖∞

The space L∞ = {X : ‖X‖∞ < ∞} of essentially bounded random variables is also a
complete metric space, but except in some trivial cases it isn’t separable. Can you prove

3Strictly speaking, d is only a metric if we identify any two random variables X,Y with d(X,Y ) = 0,
i.e., if we regard Lp as a space of equivalence classes [X ] = {Y : Ω → R : P[X 6= Y ] = 0} of p-integrable
functions; see paragraph below.
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L∞(Ω,F ,P) isn’t separable for Ω = (0, 1], F = B, and P = λ? What if instead P has finite
or countable support {ωj}, with P[{ωj}] = pj > 0,

∑

pj = 1? For X ∼ No(0, 1), what is
‖X‖∞? How about X ∼ Bi(n, p)? Or X ∼ Un(a, b)?

Theorem 4 (Jensen’s Inequality) Let ϕ be convex and X ∈ L1 integrable. Then

ϕ
(

E[X ]
)

≤ E
[

ϕ(X)
]

.

The cleanest proof I know of this relies on finding a tangent to the graph of ϕ at the point
µ = E[X ]. To start, note by convexity that for any a < b < c, ϕ(b) lies below the value at
x = b of the linear function taking the same values as ϕ(x) at x = a and x = c:

ϕ(b) ≤
c− b

c− a
ϕ(a) +

b− a

c− a
ϕ(c)

Subtracting ϕ(b) and then rearranging terms,

0 ≤
c− b

c− a
[ϕ(a)− ϕ(b)] +

b− a

c− a
[ϕ(c)− ϕ(b)]

ϕ(b)− ϕ(a)

b− a
≤

ϕ(c)− ϕ(b)

c− b

so any line through
(

b, ϕ(b)
)

with slope λ in the range

φ′(b−) := sup
a<b

ϕ(b)− ϕ(a)

b− a
≤ λ ≤ inf

c>b

ϕ(c)− ϕ(b)

c− b
=: φ′(b+)

lies below the graph of ϕ(x) (draw a picture). Now let b = µ and let λ be any number in
that interval (this will be the derivative λ = ϕ′(µ) if ϕ is differentiable at µ, but ϕ might
have a “corner” at µ like |x| does at zero). The line x ϕ(µ) + λ(x− µ) through (µ, ϕ(µ))
with slope λ lies below the graph of ϕ(x) and touches the graph at x = µ (draw it!), so

ϕ(µ) = E
[

ϕ(µ) + λ(X − µ)
]

≤ E
[

ϕ(X)
]

as claimed. Notice we didn’t have to bound ϕ above or below, or insist that ϕ(X) ∈ L1.

A Note on Notation

The distribution µX of a real-valued random variable X on a probability space (Ω,F ,P) is
completely determined by the Distribution Function F (x) = µX(−∞, x] = P[X ≤ x], and
the expectation E[g(X)] for Borel functions g : R → R has been written in many different
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ways over the centuries. Some of these include:

E[g(X)] =

∫

Ω

g
(

X(ω)
)

P(dω) =

∫

Ω

g
(

X
)

dP

=

∫

R

g(x)µX(dx) =

∫

R

g dµX

=

∫

R

g(x)FX(dx) =

∫

R

g dFX =

∫

R

g(x) dFX(x)

This last one is “Stieltjes” notation, from an early definition of the Riemann integral of a
continuous func. g as

∫ b

a
g(x) dFX(x) = limn→∞

∑

0≤i<n g(xi)[FX(xi+1)− FX(xi)], with xi =

a+ i(b−a)/n. All reduce to
∫

g(x)fX(x) dx for AC FX , with fX(x) := dFX(x)/dx = F ′
X(x).
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Miscellaneous Integral Identities and Inequalities

1. If µX is the distribution of X , and if g is a measurable real-valued function on R,
then Eg(X) :=

∫

Ω
g(X(ω))P(dω) =

∫

R
g(x)µX(dx) if either side exists. In particular,

µ := EX =
∫

xµX(dx) and σ2 := E(X−µ)2 =
∫

(x−µ)2 µX(dx) can be calculated using
sums and PMFs if X is discrete, or integrals and pdfs if it’s absolutely continuous.

2. For any p > 0, E|X|p =
∫∞

0
p xp−1

P[|X| > x] dx and E|X|p < ∞ ⇔
∑∞

n=1 np−1
P[|X| >

n] < ∞. The case p = 1 is easiest and most important: if S :=
∑∞

n=0 P[|X| > n] < ∞,
then E|X| ≤ S < E|X|+1. If X takes on only nonnegative integer values then EX = S.

3. Markov’s Inequality: If ϕ is positive and nondecreasing, then
P[X ≥ u] ≤ E[ϕ(X)]/ϕ(u). In particular P[|X| > u] ≤ ‖X‖p/u

p, P[|X| > u] ≤
(σ2 + µ2)u2, and (∀t > 0), P[X > u] ≤ M(t) e−tu for the MGF M(t) := E exp(tX).

4. Chebychev’s Inequality: Applying Markov’s inequality to |x−µ|2 gives Chebychev’s
Inequality, P[|X − µ| > kσ] ≤ 1

k2
. A one-sided version is also available: P[X > u] ≤

σ2

σ2+(u−µ)2
(pf: P[(X − µ+ t) > (u− µ+ t)] ≤ ?; optimize over t ≥ µ− u).

5. Jensen’s Inequality: Let ϕ(x) be a convex function on R and, X ∈ L1(Ω,F ,P).
Then ϕ(E[X ]) ≤ E[ϕ(X)]. Examples: ϕ(x) = |x|p, p ≥ 1; ϕ(x) = ex; ϕ(x) = [0 ∨ x].
(Introduce Lp ⊃ Lq). The equality is strict if ϕ(·) is strictly convex and X has a
non-degenerate distribution. See Theorem?? on p. ?? for a proof.

6. Hölder’s Inequality: Let r ≥ 1 and p, q > 1 with 1
p
+ 1

q
= 1

r
. Then ‖XY ‖r ≤

‖X‖p ‖Y ‖q. (Pf: If ‖X̃‖p = ‖Ỹ ‖q = 1, then |X̃Ỹ |r = exp{ r
p
log |X̃|p + r

q
log |Ỹ |q} ≤

{ r
p
|X̃|p + r

q
|Ỹ |q}). The special case of p = q = 2, r = 1 is the famous:

Cauchy-Schwartz Inequality: EXY ≤ E |XY | ≤
√

E[X2] E[Y 2].

7. Minkowski’s Inequality: Let 1 ≤ p ≤ ∞ and let X, Y ∈ Lp(Ω,F ,P). Then the

norm ‖X‖p := (E|X|p)
1
p obeys the triangle inequality on Lp(Ω,F ,P):

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p

Pf: E|X + Y |p ≤ E
(

|X|+ |Y |
)

|X + Y |p/q, then apply Hölder. What if p < 1?

8. Hoeffding’s Inequality: If {Xj} are independent and bounded above and below
individually by (∃ {aj, bj}) s.t. P[aj ≤ Xj ≤ bj ] = 1, then (∀c > 0), Sn :=

∑n
j=1Xj

satisfies P[Sn − ESn ≥ c] ≤ exp
(

− 2c2/
∑n

1 |bj − aj |
2
)

. If Xj are iid with ‖Xj‖∞ ≤ B,

then P[(X̄n − µ) ≥ ǫ] ≤ e−nǫ2/2B2

. What bound do you get for Bernoulli RVs on
P[|X̄n − p| > ǫ]? The proof requires independence, so we’ll look at it next week.
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