7 Convergence in \mathbb{R}^d and in Metric Spaces

A sequence of elements a_n of \mathbb{R}^d converges to a limit a if and only if, for each $\epsilon > 0$, the sequence a_n eventually lies within a ball of radius ϵ centered at a. It’s okay if the first few (or few million) terms lie outside that ball— and the number of terms that do lie outside the ball may depend on how big ϵ is (if ϵ is small enough it typically will take millions of terms before the remaining sequence lies inside the ball). This can be made mathematically precise by introducing a letter (say, N_ϵ) for how many initial terms we have to throw away, so that $a_n \to a$ if and only if there is an $N_\epsilon < \infty$ so that, for each $n \geq N_\epsilon$, $|a_n - a| < \epsilon$: only finitely many a_n can be farther than ϵ from a.

The same notion of convergence really works in any metric space, where we require that some measure of the distance $d(a_n, a)$ from a_n to a tend to zero in the sense that it exceeds each number $\epsilon > 0$ for at most some finite number N_ϵ of terms.

Points a_n in d-dimensional Euclidean space will converge to a limit $a \in \mathbb{R}^d$ if and only if each of their coordinates converges in \mathbb{R}; and, since there are only finitely many coordinates, if they all converge then they do so uniformly (i.e., for each ϵ we can take the same N_ϵ for all d of the coordinate sequences), so all notions of convergence in \mathbb{R}^d are equivalent. For example,

$$\max_{1 \leq i \leq d} |x_i - y_i| \leq \left[\sum_{1 \leq i \leq d} (x_i - y_i)^2 \right]^{\frac{1}{2}} \leq \sum_{1 \leq i \leq d} |x_i - y_i| \leq d \max_{1 \leq i \leq d} |x_i - y_i|$$

so convergence is identical for all three of these metrics. Convergence is much more complex and interesting for random variables.

7.1 Convergence of Random Variables

For random variables X_n the idea of convergence to a limiting random variable X is more delicate, since each X_n is a function of $\omega \in \Omega$ and usually there are infinitely many points $\omega \in \Omega$. What should we mean in saying that a sequence X_n converges to a limit X? That $X_n(\omega)$ converges to $X(\omega)$ for each fixed ω? Or that $X_n(\omega)$ converges uniformly in $\omega \in \Omega$? Or that some notion of the distance $d(X_n, X)$ between X_n and the limit X decreases to zero? Should the probability measure P be involved in some way?

Here are a few different choices of what we might mean by the statement that “X_n converges to X,” for a sequence of random variables X_n and a random variable X, all defined on the same probability space (Ω, \mathcal{F}, P):
The real numbers $X_n(\omega) \to X(\omega)$ for every $\omega \in \Omega$ (pointwise convergence):

$$\forall \epsilon > 0 \exists N_{\epsilon,\omega} < \infty \forall n \geq N_{\epsilon,\omega} \ |X_n(\omega) - X(\omega)| < \epsilon.$$

The sequences of real numbers $X_n(\omega) \to X(\omega)$ uniformly for $\omega \in \Omega$:

$$\forall \epsilon > 0 \exists N_{\epsilon} < \infty \forall n \geq N_{\epsilon} \ |X_n(\omega) - X(\omega)| < \epsilon.$$

Outside some null event $\mathcal{N} \in \mathcal{F}$, each sequence of real numbers $X_n(\omega) \to X(\omega)$ (Almost-Sure convergence, or convergence “almost everywhere” (a.e.)): for some $\mathcal{N} \in \mathcal{F}$ with $P[\mathcal{N}] = 0$,

$$\forall \epsilon > 0 \exists N_{\epsilon} < \infty \forall n \geq N_{\epsilon} \ |X_n(\omega) - X(\omega)| < \epsilon.$$

For each $\epsilon > 0$, the probabilities $P[|X_n - X| > \epsilon] \to 0$ (convergence “in probability”, or “in measure”):

$$\forall \epsilon > 0 \forall \eta > \epsilon \exists N_{\epsilon,\eta} < \infty \forall n \geq N_{\epsilon,\eta} \ P[|X_n - X| > \epsilon] < \eta.$$

The expectation $E[|X_n - X|]$ converges to zero (convergence “in L_1”):

$$\forall \epsilon > 0 \exists N_{\epsilon} < \infty \forall n \geq N_{\epsilon} \ E[|X_n - X|] < \epsilon.$$

For some fixed number $p > 0$, the expectation of the p^{th} absolute power $E[|X_n - X|^p]$ converges to zero (convergence “in L_p,” sometimes called “in the p^{th} mean”):

$$\forall \epsilon > 0 \exists N_{\epsilon} < \infty \forall n \geq N_{\epsilon} \ E[|X_n - X|^p] < \epsilon.$$

The distributions of X_n converge to the distribution of X, i.e., the measures $P \circ X_n^{-1}$ converge in some way to $P \circ X^{-1}$ (“vague” or “weak” convergence, or “convergence in distribution”), sometimes written $X_n \Rightarrow X$:

$$\forall \epsilon > 0 \exists \phi \in C_b(\mathbb{R}) \exists N_{\epsilon,\phi} < \infty \forall n \geq N_{\epsilon,\phi} \ E[|\phi(X_n) - \phi(X)|] < \epsilon.$$

Which of these eight notions of convergence is right for random variables? The answer is that all of them are useful in probability theory for one purpose or another. You will want to know which ones imply which other ones, under what conditions. All but the first two (pointwise, uniform) notions depend upon the measure P; it is possible for a sequence X_n to converge to X in any of these senses for one probability measure P, but to fail to converge for another P'. Most of them can be phrased as metric convergence for some notion of distance between random variables.
pr.: $X_n \to X$ in probability if and only if $d_0(X, X_n) \to 0$ as real numbers, where:

$$d_0(X, Y) := E \left(\frac{|X - Y|}{1 + |X - Y|} \right)$$

L_1: $X_n \to X$ in L_1 if and only if $d_1(X, X_n) := \|X - X_n\|_1 \to 0$ as real numbers, where:

$$\|Z\|_1 := E|Z|$$

L_p: $X_n \to X$ in L_p if and only if $d_p(X, X_n) \to 0$ as real numbers, where:

$$d_p(X, Y) := \begin{cases} (E|X - Y|^p)^{1/p} & p \geq 1 \\ E|X - Y|^p & 0 < p < 1. \end{cases}$$

L_∞: $X_n \to X$ almost uniformly if and only if $d_\infty(X, X_n) := \|X - X_n\|_\infty \to 0$ as real numbers, where:

$$\|Z\|_\infty := \sup\{r \geq 0 : P[|Z| > r] > 0\}$$

As the notation suggests, convergence in probability and in L_∞ are in some sense limits of convergence in L_p as $p \to 0$ and $p \to \infty$, respectively. Almost-sure convergence is an exception: there is no metric notion of distance $d(X, Y)$ for which $X_n \to X$ almost surely if and only if $d(X, X_n) \to 0$ (unless Ω is countable or P is atomic).

7.1.1 Almost-Sure Convergence

Let $\{X_n\}$ and X be a collection of RVs on some (Ω, \mathcal{F}, P). The set of points ω for which $X_n(\omega)$ does converge to $X(\omega)$ is just

$$\bigcap_{\epsilon > 0} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \{\omega : |X_n(\omega) - X(\omega)| \leq \epsilon\},$$

the points which, for all $\epsilon > 0$, have $|X_n(\omega) - X(\omega)|$ less than ϵ for all but finitely-many n. The sequence X_n is said to converge “almost everywhere” (a.e.) to X, or to converge to X “almost surely” (a.s.), if this set of ω has probability one, or (conversely) if its complement is a null set:

$$P\left[\bigcup_{\epsilon > 0} \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} \{\omega : |X_n(\omega) - X(\omega)| > \epsilon\}\right] = 0.$$
\[P \left[\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} \left\{ \omega : |X_n(\omega) - X(\omega)| > \epsilon \right\} \right] = 0. \quad (a.e.) \]

This combination of intersection and union occurs frequently in probability, and has a name; for any sequence \(E_n \) of events, \(\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} E_n \) is called the \(\text{lim sup} \) of the \{\(E_n \)\}, and is sometimes described more colorfully as \([E_n \text{ i.o.}] \), the set of points in \(E_n \) “infinitely often.” Its complement is the \(\text{lim inf} \) of the sets \(F_n = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} F_n \): the set of points in all but finitely many of the \(F_n \). Since \(P \) is countably additive, and since the intersection in the definition of \(\text{lim sup} \) is decreasing and the union in the definition of \(\text{lim inf} \) is increasing, always we have
\[
P[\bigcup_{n=m}^{\infty} E_n] \searrow P[\bigcap_{n=m}^{\infty} E_n] \text{ and } P[\bigcap_{n=m}^{\infty} F_n] \nearrow P[\bigcup_{n=m}^{\infty} F_n] \text{ as } m \to \infty.
\]

Theorem 1 \(X_n \to X \) \(P\)-a.s. if and only if for every \(\epsilon > 0 \),
\[
\lim_{m \to \infty} P[|X_n - X| > \epsilon \text{ for some } n \geq m] = 0.
\]

In particular, \(X_n \to X \) \(P\)-a.s. if \(\sum_{n<\infty} P[|X_n - X| > \epsilon] < \infty \) for each \(\epsilon > 0 \) (why?).

7.1.2 Convergence In Probability

The sequence \(X_n \) is said to converge to \(X \) “in probability” (pr.) if, for each \(\epsilon > 0 \),
\[
P[\omega : |X_n(\omega) - X(\omega)| > \epsilon] \to 0. \quad (\text{pr.})
\]

If we denote by \(E_n \) the event \([\omega : |X_n(\omega) - X(\omega)| > \epsilon] \) we see that convergence almost surely requires that \(P[\bigcup_{n \geq m} E_n] \to 0 \) as \(m \to \infty \), while convergence in probability requires only that \(P[E_n] \to 0 \). Thus:

Theorem 2 If \(X_n \to X \) a.s. then \(X_n \to X \) pr.

Here is a partial converse:

Theorem 3 If \(X_n \to X \) pr., then there is a subsequence \(n_k \) such that \(X_{n_k} \to X \) a.s.

Proof. Set \(n_0 := 0 \) and, for each integer \(k \geq 1 \), set
\[
n_k := \inf \left\{ n > n_{k-1} : P \left[\omega : |X_n(\omega) - X(\omega)| > \frac{1}{k} \right] \leq 2^{-k} \right\}.
\]
For any $\epsilon > 0$ we have $\frac{1}{k} \leq \epsilon$ eventually (namely, for $k \geq k_0 := \lceil \frac{1}{\epsilon} \rceil$) and for each $m \geq k_0$,
\[
P \left[\bigcup_{k=m}^{\infty} \left\{ \omega : |X_{n_k}(\omega) - X(\omega)| > \epsilon \right\} \right]
\leq P \left[\bigcup_{k=m}^{\infty} \left\{ \omega : |X_{n_k}(\omega) - X(\omega)| > \frac{1}{k} \right\} \right]
\leq \sum_{k=m}^{\infty} P \left\{ \omega : |X_{n_k}(\omega) - X(\omega)| > \frac{1}{k} \right\}
\leq \sum_{k=m}^{\infty} 2^{-k} = 2^{1-m} \to 0 \text{ as } m \to \infty.
\]

In fact, this characterizes convergence in probability:

Theorem 4 Let $\{X_n\}$, X be random variables on (Ω, \mathcal{F}, P). Then $X_n \to X$ pr. if and only if every sequence $\mathbb{N} \ni n_k \nearrow \infty$ has a subsequence n_{k_i} such that $X_{n_{k_i}} \to X$ a.s as $i \to \infty$.

Proof. The “only if” (\Rightarrow) direction is just Theorem 3. Suppose (for contradiction) that $X_n \not\to X$ pr.; then for some $\epsilon > 0$ and $\delta > 0$ there are infinitely-many n for which $P[|X_n - X| > \epsilon] > \delta$. Let n_k be an increasing sequence satisfying this bound. By hypothesis, there is a subsequence along which $X_{n_{k_i}} \to X$ a.s.; but by Theorem 2, also $X_{n_{k_i}} \to X$ pr, so $P[|X_n - X| > \epsilon] \to 0$, a contradiction.

Theorem 5 Let $\{X_n\}$, X be real-valued random variables on (Ω, \mathcal{F}, P) with $X_n \to X$ pr. and let $\phi : \mathbb{R} \to \mathbb{R}$ be continuous. Then $Y_n := \phi(X_n) \to Y := \phi(X)$ pr.

Proof. For an easy but indirect proof, simply apply Theorem 4. For a more direct approach, begin by selecting any $\epsilon > 0$ and $\delta > 0$. Find a compact set $K_\epsilon \subset \mathbb{R}$ with $P[X \in K_\epsilon] \geq 1 - \epsilon/2$; since ϕ is uniformly continuous on K_ϵ, find $\eta > 0$ such that
\[
(\forall x \in K_\epsilon)(\forall y \in \mathbb{R}) \quad |x - y| \leq \eta \quad \Rightarrow \quad |\phi(x) - \phi(y)| < \delta.
\]

Now, since $X_n \to X$ pr., find $N \in \mathbb{N}$ such that
\[
(\forall n \geq N) \quad P[|X_n - X| > \eta] \leq \epsilon/2.
\]

Then for $n \geq N$,
\[
P[|Y_n - Y| > \delta] \leq P[X \notin K_\epsilon] + P[X \in K_\epsilon, |\phi(X_n) - \phi(X)| > \delta]
\leq P[X \notin K_\epsilon] + P[X \in K_\epsilon, |X_n - X| > \eta]
\leq \epsilon/2 + \epsilon/2 = \epsilon.
\]

The same result (with the same proof) is true for random variables X_n, X taking values in any σ-compact complete separable metric space \mathcal{X} and, in particular, for $\mathcal{X} = \mathbb{R}^d$.
7.1.3 A Counter-Example

If \(X_n \to X \) \(a.s. \) implies \(X_n \to X \) \(pr. \), and if the converse holds at least along subsequences, are the two notions really identical? Or is it possible for RVs \(X_n \) to converge to \(X \) \(pr. \), but not \(a.s. \)? The answer is that the two notions are different, and that \(a.s. \) convergence is strictly stronger than convergence \(pr. \). Here’s an example:

First notice that every integer \(n \in \mathbb{N} \) can be written uniquely in the form \(n = i + 2^j \) for integers \(j \geq 0 \) and \(0 \leq i < 2^j \) (set \(j := \lfloor \log_2 n \rfloor \) and \(i := n - 2^j \)). Let \((\Omega, \mathcal{F}, P)\) be the unit interval with Borel sets and Lebesgue measure. Define a sequence of random variables \(X_n : \Omega \to \mathbb{R} \) by

\[
X_n(\omega) = \begin{cases}
1 & \text{if } \frac{i}{2^j} < \omega \leq \frac{i+1}{2^j} \\
0 & \text{otherwise}
\end{cases}
\]

where \(n = i + 2^j, \ 0 \leq i < 2^j \).

SO,

- \(X_1 \) is one on 1 interval of length 1,
- \(X_2, X_3 \) are one on 2 intervals each of length 1/2,
- \(X_4, \ldots, X_7 \) are one on 4 intervals each of length 1/4,
- \(X_8, \ldots, X_{15} \) are one on 8 intervals each of length 1/8,

and, in general, each \(X_n \) is one on an interval of length \(2^{-j} \). Since \(\frac{1}{n} \leq \frac{1}{2^j} < \frac{2}{n} \),

\[
P[|X_n| > \epsilon] = 2^{-j} < \frac{2}{n} \to 0
\]

for each \(0 < \epsilon < 1 \) and \(X_n \to 0 \) \(pr. \). On the other hand, for every \(j > 0 \) we have each \(\omega \in \Omega \) in one of the \(2^j \) intervals of length \(2^{-j} \) where some \(X_n \) is one,

\[
(\forall j \in \mathbb{N}) \ \Omega = \bigcup_{i=0}^{2^j-1} \left(\frac{i}{2^j}, \frac{i+1}{2^j} \right] = \bigcup_{n=2^j}^{2^{j+1}-1} [\omega : X_n(\omega) = 1]
\]

For every \(\omega \in \Omega \) and \(j \in \mathbb{N} \) there is some \(n \geq 2^j \) with \(X_n(\omega) = 1 \) (and so there are infinitely-many such \(X_n \)); thus \([\omega : X_n(\omega) \to 0] \) is empty, not a set of probability one! Obviously \(X_n \) does not converge \(a.s. \), although it does converge \(pr. \).

This example is a building-block for several examples to come, so getting to know it well is worthwhile. Try to verify that \(X_n \to 0 \) in probability (how large must \(n \) be to ensure \(P[|X_n| > \delta] < \epsilon? \)) and in \(L_p \) (how large must \(n \) be to ensure \(||X_n||_p < \epsilon? \) but not almost surely (what is \([\omega : X_n \to 0]? \) Why?). Find \(||X_n||_p \) explicitly. Why doesn’t \(X_n \to 0 \) \(a.s. \)?

What would happen if we multiplied \(X_n \) by \(n \)? By \(n^2 \)? By \(j := \lfloor \log_2 n \rfloor \)? What about the subsequence \(Y_n := X_{2^n} \)? Does \(X_n \) converge in \(L_\infty \)?
In summary, for $1 < p < q < \infty$ the convergence implications are:

\[L_\infty \xrightarrow{a.s.} L_q \xrightarrow{pr.} L_p \xrightarrow{pr.} L_1 \]

with partial converses ($pr. \to a.s.$ along subsequences, $pr. \to L_1, L_p, L_q$ under UI—see the next section). All of these imply convergence in distribution, which we’ll consider later.

7.2 Uniform Integrability

Let $Y \geq 0$ be integrable on some probability space (Ω, \mathcal{F}, P),

\[E[Y] = \int\Omega Y \, dP < \infty. \]

By Lebesgue’s DCT it follows that

\[\lim_{t \to \infty} E[Y \mathbf{1}_{\{Y > t\}}] = \lim_{t \to \infty} \int_{[\omega; Y(\omega) > t]} Y \, dP = 0 \]

since $\{Y \mathbf{1}_{\{Y > t\}}\}$ is dominated by $Y \in L_1$ and converges to zero $a.s.$ as $t \to \infty$.

Consequently, for any sequence of random variables X_n also dominated by Y in the sense that $|X_n| \leq Y$ $a.s.$,

\[E[|X_n| \mathbf{1}_{\{|X_n| > t\}}] \leq E[Y \mathbf{1}_{\{Y > t\}}] \to 0, \text{ uniformly in } n. \]
Call the sequence X_n uniformly integrable (or simply UI) if $E[|X_n|1_{\{|X_n|>t\}}] \rightarrow 0$ uniformly in n, even if it is not dominated by a single integrable random variable Y. The big result is:

Theorem 6 If $X_n \rightarrow X$ pr. and if X_n is UI then $X_n \rightarrow X$ in L_1.

Proof. Without loss of generality take $X \equiv 0$. Fix any $\epsilon > 0$; find (by UI) $t_\epsilon > 0$ such that $E[|X_n|1_{\{|X_n|>t_\epsilon\}}] \leq \epsilon$ for all n. Now (by $X_n \rightarrow X$ pr.) find $N_\epsilon \in \mathbb{N}$ such that, for $n \geq N_\epsilon$, $P(|X_n| > \epsilon) < \epsilon/t_\epsilon$. Then:

\[
E[|X_n|] = \int_{|X_n| \leq \epsilon} |X_n| \, dP + \int_{|X_n| > \epsilon} |X_n| \, dP \leq \int_{|X_n| \leq \epsilon} \epsilon \, dP + \int_{|X_n| > \epsilon} t_\epsilon \, dP \leq \epsilon + t_\epsilon \cdot P(|X_n| > \epsilon) < 3\epsilon.
\]

Theorem 6 has a partial converse— if $\{X_n\} \subset L_1$ and $X_n \rightarrow X$ pr. and if $E|X_n| \rightarrow E|X| < \infty$, then $\{X_n\}$ is UI (see Theorem 9). For another proof, first note $E[|X_n|1_{\{|X_n|>t\}}] = E[|X_n|] - E[|X_n|1_{\{|X_n|\leq t\}}]$. For $\epsilon > 0$ first pick $t < \infty$ s.t. $E[|X|1_{\{|X|>t\}}] < \epsilon$ (possible, since $X \in L_1$); then (by DCT) find N s.t. for $n \geq N$, $\|X_n1_{\{|X_n|\leq t\}} - X1_{\{|X|\leq t\}}\|_1 < \epsilon$ and (by assumption) $|E|X_n| - E|X| < \epsilon$. Then $E[|X_n|1_{\{|X_n|>t\}}] \leq 3\epsilon$ for $n \geq N$; since $X_j \in L_1$ for $j < N$, the result follows (with $t^* = \max(t, t_1, ..., t_{N-1})$).

Similarly, for any $p > 0$, $X_n \rightarrow X$ (pr.) and $|X_n|^p$ UI (for example, $|X_n| \leq Y \in L_p$, or $\|X_n\|_q \leq B < \infty$ for some $q > p$) gives $X_n \rightarrow X$ (L_p). In the special case of $|X_n| \leq Y \in L_p$ this is just Lebesgue’s **Dominated Convergence Theorem** (DCT).

We have seen that $\{X_n\}$ is UI whenever $|X_n| \leq Y \in L_1$, but UI is more general than that. Here are two more criteria. The first is called the “crystal ball condition”:

Theorem 7 If $\{X_n\}$ is uniformly bounded in L_p for some $p > 1$ then $\{X_n\}$ is UI.

Proof. Let $B \in \mathbb{R}_+$ be an upper bound for $\|X_n\|_p$ and set $q := \frac{p}{p-1}$. By Hölder’s inequality

\[
E \left[|X_n|1_{\{|X_n|>t\}} \right] \leq \|X_n\|_p \cdot \|1_{\{|X_n|>t\}}\|_q \\
\leq B \cdot \{P(|X_n| > t)\}^{1/q} \\
\leq B \cdot \{E[|X_n|^p/t^p]\}^{1/q} \quad \text{by Markov’s inequality} \\
= B \cdot \{\|X_n\|_{p/t^p}\}^{1/q} \\
= B \cdot \|X_n\|_{p-1/t^{p-1}} \quad \text{since } p/q = p - 1 \\
\leq B^p \cdot t^{1-p} \rightarrow 0
\]

uniformly in $\{n\}$. \hfill \Box
Theorem 8 The random variables \(\{X_\alpha\} \) are UI if and only if they are uniformly bounded in \(L_1 \) and

\[
(\forall \epsilon > 0)(\exists \delta > 0)(\forall A \in \mathcal{F}) \quad P(A) < \delta \Rightarrow E[|X_\alpha|1_A] < \epsilon.
\]

If \((\Omega, \mathcal{F}, P)\) is non-atomic, the condition “\(\{X_\alpha\} \) is uniformly bounded in \(L_1 \)” is unnecessary.

Proof. Straightforward. If \((\Omega, \mathcal{F}, P)\) is non-atomic, for each \(\epsilon > 0 \) find \(\delta > 0 \) by hypothesis and then cover \(\Omega \) with \(N := \lfloor 1 + 1/\delta \rfloor \) sets \(A_i \in \mathcal{F} \) with \(P(A_i) < \delta \) to see \(E[X_\alpha] < N\epsilon \) uniformly. Try to offer an example to illustrate what can go wrong if \(P \) has an atom \(\omega^* \in \Omega \) with \(c = P[\{\omega^*\}] > 0 \).

Theorem 9 Let \(\{X_n\}, X \in L_1(\Omega, \mathcal{F}, P) \) with \(X_n \to X \) pr. Then the following are equivalent:

1. \(\{X_n\} \) is UI
2. \(X_n \to X \text{ in } L_1 \)
3. \(E|X_n| \to E|X| \)

Proof. Since 1 \(\Rightarrow \) 2 by Theorem 6 and 2 \(\Rightarrow \) 3 by the triangle inequality, it remains only to show that 3 \(\Rightarrow \) 1. Let \(X_n \to X \text{ pr. and } E|X_n| \to E|X| \). Fix \(\epsilon > 0 \) and, for each \(t > 0 \), set

\[
f_t(x) := \begin{cases} |x| & 0 \leq |x| \leq t \\ t(t + 1 - |x|) & t < |x| \leq t + 1 \\ 0 & t + 1 < |x| < \infty \end{cases}
\]

and note that \(0 \leq |x|1_{|x|\leq t} \leq f_t(x) \leq |x|1_{|x|\leq t+1} \) and \(0 \leq f_t(x) \leq t \).

Since \(X \in L_1 \), \(E|X|1_{\{|X|>t\}} \to 0 \) as \(t \to \infty \) by DCT so we can find \(t \) sufficiently large that

\[
E|X|1_{\{|X|>t\}} < \epsilon. \tag{1}
\]

Since \(f_t \) is continuous and bounded, \(f_t(X_n) \to f_t(X) \) as \(n \to \infty \) in probability by Theorem 5 and also in \(L_1 \) by DCT. For large enough \(n \) (say, \(n \geq N' \)), \(\|f_t(X_n) - f_t(X)\|_1 \leq \epsilon \) and so

\[
E|X_n|1_{\{|X_n|\leq t+1\}} \geq E f_t(X_n) \geq E f_t(X) - \epsilon \geq E|X|1_{\{|X|\leq t\}} - \epsilon. \tag{2}
\]

Since \(E|X_n| \to E|X| \), for sufficiently large \(n \) (say, \(n \geq N \geq N' \))

\[
E|X_n| \leq E|X| + \epsilon. \tag{3}
\]

Upon subtracting (2) from (3) we have

\[
E|X_n|1_{\{|X_n|>t+1\}} \leq E|X|1_{\{|X|>t\}} + 2\epsilon.
\]

Applying (1) we get

\[
E|X_n|1_{\{|X_n|>t+1\}} < 3\epsilon
\]

completing the proof that \(\{X_n\} \) is UI.

\[\square\]
7.3 Cauchy Convergence

Every form of convergence we have considered for random variables except a.s. can be represented as convergence in a metric space. A sequence X_n converges to a limit X in a metric space if every ball centered at X contains all but finitely-many of $\{X_n\}$. Sometimes we wish to consider a sequence X_n that converges to some limit, without knowing the limit in advance. The concept of Cauchy Convergence is ideal for this—we insist that for each $\epsilon > 0$, all but finitely-many of the ϵ-balls centered at points X_m of the sequence contain all but finitely-many of the points. For any of distance measures d_p of Section (7.1), with $0 \leq p \leq \infty$, say “X_n is a Cauchy sequence in L_p” if

$$(\forall \epsilon > 0)(\exists N_\epsilon < \infty)(\forall m, n \geq N_\epsilon) \quad d_p(X_m, X_n) < \epsilon.$$

The spaces L_p for $0 \leq p \leq \infty$ are all complete in the sense that if X_n is Cauchy for d_p then there exists $X \in L_p$ for which $d_p(X_n, X) \to 0$. To see this, take an increasing subsequence N_k along which $d_p(X_{N_m}, X) < 2^{-k}$ for $n \geq m \geq N_k$, and set $X_0 := 0$ and $N_0 = 0$; for $k \in \mathbb{N}$ set $Y_k := X_{N_k} - X_{N_{k-1}}$. Check to confirm that $X := \sum_{k=1}^{\infty} Y_k$ is well-defined and $X \in L_p$ a.s., and that $d_p(X_n, X) \to 0$.

7.4 Convergence in Distribution

Some of the most famous results in probability theory concern the limiting distribution of sequences of random variables. For example,

- **Central Limit Theorem**: For iid $\{X_n\} \subset L_2$ and large n, $(S_n - n\mu)/\sqrt{n\sigma^2}$ has approximately the Normal $\mathcal{N}(0,1)$ distribution;

- **Law of Small Numbers**: For independent \mathbb{N}_0-valued random variables X_i with small means μ_i, S_n has approximately the Poisson $\mathcal{P}(\lambda_n)$ distribution with mean $\lambda_n = \sum \mu_i$;

- **Extreme Value or Three Types Theorem**: For iid $\{X_n\}$ and suitable sequences $\{a_n\}$, $\{b_n\}$ of constants, $\max\{(X_j - a_n)/b_n : j \leq n\}$ has approximately the Gumbel, Fréchet, or reversed Weibull distribution.

But what does it mean to have a distribution “approximately”???

If X_n has the discrete uniform distribution on the points $\{i/n\}$ for $1 \leq i \leq n$, and if n is huge (say, $2^{31} \approx 10^{17}$) then most of us would regard X_n as “approximately” a standard uniform $\mathcal{U}(0,1)$ random variable—in fact, this is the best one can hope for in a 64-bit double-precision floating-point representation. Yet each X_n has a discrete distribution while the limit is a continuous distribution, so whatever we mean by “converging in distribution” it can’t involve either density functions or probability mass functions, and it is too much to ask for the distributions $\mu_n(B) = P[X_n \in B]$ to converge for every Borel set $B \subset \mathbb{R}$.

In this example the distribution functions $F_n(x) = P[X_n \leq x]$ do in fact converge at every $x \in \mathbb{R}$, but that too is a bit too much to ask—consider constant random variables $Y_n := \ldots$
−1/n, for example, which converge almost-surely to Y := 0, but the distribution functions do not converge at the point y = 0. This is closer to the right idea, however:

Definition 1 Let \(\{\mu_n(dx)\} \) and \(\mu(dx) \) be distributions on a measurable space \((X, \mathcal{E}) \). Say “\(\mu_n \) converges in distribution to \(\mu \)” or write “\(\mu_n \Rightarrow \mu \)” if

\[
\int_X \phi(x) \mu_n(dx) \to \int_X \phi(x) \mu(dx)
\]

as \(n \to \infty \) for every continuous bounded function \(\phi : X \to \mathbb{R} \).

If \(\{X_n\} \) are random variables with distributions \(\{\mu_n\} \), we also say that “\(X_n \) converges in distribution to \(\mu \)” and write “\(X_n \Rightarrow \mu \).” This definition works not only for real-valued random variables where \(X = \mathbb{R} \) and \(\mathcal{E} = \mathcal{B} \) is the Borel sets, but also in \(\mathbb{R}^d \) or any other complete separable metric space \(X \) with Borel sets \(\mathcal{E} \). The connection with distribution functions is given by:

Proposition 1 Let \(\{\mu_n(dx)\} \) and \(\mu(dx) \) be distributions on the real line \((\mathbb{R}, \mathcal{B}) \), and let \(F_n(x) := \mu_n((−\infty, x]) \) and \(F(x) := \mu((−\infty, x]) \) be the associated DFs. Then the following are equivalent:

- \(\mu_n \Rightarrow \mu \);
- \(F_n(x) \to F(x) \) on any dense set of \(\{x\} \) in \(\mathbb{R} \);
- \(F_n(x) \to F(x) \) at every \(x \in \mathbb{R} \) where \(F(x−) = F(x) \) is continuous.

A similar but more general result for complete separable metric spaces \(X \) (like \(\mathbb{R}^n \)) with their Borel sets is that \(\mu_n \Rightarrow \mu \) if and only if \(\mu_n(B) \to \mu(B) \) for every Borel set \(B \) whose boundary \(\partial B := \overline{B} \cap \overline{B}^c \) has zero measure for the limiting distribution, \(\mu(\partial B) = 0 \). Convergence in distribution is weaker than any of the other forms of convergence we have considered:

Proposition 2 Let \(\{X_n\} \), \(X \) be random variables on some probability space \((\Omega, \mathcal{F}, P) \) with distributions \(\{\mu_n\} \), \(\mu \), and suppose \(X_n \Rightarrow X \) pr. Then \(X_n \Rightarrow \mu \).

The proof is a simple application of the UI Convergence Theorem to the (uniformly bounded and hence UI) random variables \(\phi(X_n) \).

Convergence in distribution is strictly weaker than any other notion, because it even applies if the \(\{X_n\} \) are defined on different probability spaces \((\Omega_n, \mathcal{F}_n, P_n) \), where none of the other forms of convergence even makes sense. As usual there is a partial converse, however:

Proposition 3 Let \(\mu_n \Rightarrow \mu \) on the real line \((\mathbb{R}, \mathcal{B}) \). Then there exists a probability space \((\Omega, \mathcal{F}, P) \) and random variables \(\{X_n\} \), \(X \) with distributions \(\{\mu_n\} \), \(\mu \) for which \(X_n \to X \) a.s.

It is enough to take \(\Omega = (0, 1], \mathcal{F} = \mathcal{B}, P = \lambda \), and for \(\omega \in \Omega \) set

\[
X_n(\omega) := \inf \{x \in \mathbb{R}_+: F_n(x) \geq \omega\} \quad X(\omega) := \inf \{x \in \mathbb{R}_+: F(x) \geq \omega\}
\]

and verify that \(X_n(\omega) \to X(\omega) \) for all but countably-many \(\omega \in \Omega \).
7.5 Summary: UI and Convergence Concepts

I. Uniform Integrability (UI)
 A. \[|X_n| \leq Y \in L_r, r > 0, \] implies \[\int_{|X_n| > t} |X_n|^r \, dP \leq \int_{Y > t} Y^r \, dP \to 0 \] as \(t \to \infty, \)
 uniformly in \(n, \) so \(\{|X_n|^r\} \) is UI. This is the definition of UI for \(r = 1. \)
 B. If \((\Omega, \mathcal{F}, P) \) nonatomic, \(X_n \) UI iff \((\forall \epsilon)(\exists \delta) \) \(\sup|X_n| \leq \epsilon \) \(\Rightarrow \) \(\int_{|X_n| > t} |X_n|^r \, dP \to 0 \) as \(t \to \infty. \)
 C. \(E|X_n|^q \leq c^q < \infty \) implies \(|X_n|^p \) UI for each \(p < q. \)
 1. Remark: not for \(p = q \) (counter-eg: \(X_n := n1_{(0,1/n]} \))
 D. Main result: If \(X_n \to X \) pr., then \(|X_n|^p \) UI \(\iff \) \(X_n \to X \) in \(L_p \) \(\iff \) \(E|X_n|^p \to E|X|^p. \)

II. Convergence in Distribution (aka Vague Convergence)
 A. \(X_n \to X \) pr. iff \((\forall n_k \uparrow)(\exists n_{k_i} \uparrow) X_{n_{k_i}} \to X \) a.s. (by contradiction)
 B. \(X_n \to X \) a.s. and \(g(x) \) continuous implies \(g(X_n) \to g(X) \) a.s.
 C. \(X_n \to X \) pr. and \(g(x) \) continuous \(\Rightarrow \) \(g(X_n) \to g(X) \) pr. (use A, B)
 D. Definition: \(X_n \Rightarrow X \) if \((\forall \phi \in C_b(\mathbb{R})) E\phi(X_n) \to E\phi(X) \)
 1. Prop: \(X_n \to X \) pr. implies \(X_n \Rightarrow X \) (use II.C)
 2. Prop: \(X_n \Rightarrow X \) implies \(F_n(r) \to F(r) \) for all \(r \) s.t. \(F(r) = F(r-) \).
 a. Remark: even if \(X_n \Rightarrow X, F_n(r) \) may not converge where \(F(r) \) jumps;
 b. Remark: even if \(X_n \Rightarrow X, f_n(r) := F_n'(r) \) may not converge to \(f(r) := F'(r); \) in fact, either may fail to exist.

III. Implications among cgce notions: a.s., pr., \(L_p, L_q, L_\infty, \) dist. \((0 < p < q < \infty):\)
 A. a.s. \(\Rightarrow \) pr. (by Easy Borel-Cantelli)
 1. pr. \(\Rightarrow \) a.s. along subsequences
 2. pr. \(\neq \) a.s. (counter-eg: \(X_n(\omega) = 1_{(i/2^j,(i+1)/2^j]}(\omega), n = i + 2^j \))
 B. \(L_p \Rightarrow \) pr. (by Markov’s inequality)
 1. pr. \(\Rightarrow \) \(L_p \) under Uniform Integrability
 2. pr. \(\neq \) \(L_p \) (counter-eg: \(X_n = n^{1/p}1_{(0,1/n]} \))
 C. \(L_q \Rightarrow \) \(L_p \) for \(p < q \) (by Jensen’s inequality)
 1. \(L_p \neq \) \(L_q \) (counter-eg: \(X_n = n^{1/q}1_{(0,1/n]} \))
 D. \(L_\infty \Rightarrow \) \(L_p \) (simple estimate, or \(\|X\|_p \) as \(p \) \(\nearrow \) by Jensen)
 1. \(L_p \neq \) \(L_\infty \) (counter-eg: \(X_n = 1_{(0,1/n]} \))
 E. \(L_\infty \Rightarrow \) a.s. (almost-uniform cgce implies almost-pointwise cgce)
 F. pr. \(\Rightarrow \) dist. (II.D.1 above)
 1. dist. \(\neq \) pr. (counter-eg: \(X_n, X \) on different spaces or iid \(\{X_n\} \))
 2. dist. \(\Rightarrow \) a.s. \((\exists (\Omega, \mathcal{F}, P), X_n, X \ni X_n \to X \) a.s.)