
STA 711: Probability & Measure TheoryRobert L. Wolpert12 Martingale Methods: Appli
ation to SPRTRandom Walks and MartingalesLet f�jg be independent, identi
ally distributed random variables, all with the same mean � = E[�j℄,varian
e �2 = V[�j ℄, and moment generating fun
tion M(�) = E[e��j ℄. Under suitable regularity
onditions the logarithm m(�) := logM(�) has Taylor expansion m(�) = ��+�2�2=2+ o(�2) nearzero. Let Fn := �f�j : j � ng be the �ltration generated by f�jg.For any x 2 R 
onsider the sequen
e Xn = x +Pj�n �j of partial sums, starting at x; Xn is arandom walk starting at x. Fix real numbers a < b and de�ne a fFng-stopping time � = �a;b by� := inffn : Xn =2 (a; b)gand the \right exit probability" by � := P[� < 1 and X� � b℄. Our obje
t is to 
ompute � andE[� ℄, the probability of exiting on the right and the expe
ted exit time, as fun
tions of x 2 (a; b).The Symmetri
 CaseFirst suppose � = 0. Then Xn is a martingale, and so (by the optional sampling theorem) is X�^n,whi
h moreover is bounded and hen
e uniformly integrable. It follows thatx = E[X�^0℄= limn!1E[X�^n℄= E[X� ℄� a(1� �) + b(�); solving, we �nd� � x� ab� a(the estimates are exa
t if P[X� 2 fa; bg℄ = 1, but only approximate if there is a 
han
e of\overshooting" the boundary). Also (Xn)2 � n�2 is a martingale, sox2 = E[(X�^0)2 � (� ^ 0)�2℄= E[(X� )2 � ��2℄� a2(1� �) + b2(�) � E[� ℄�2; soE[� ℄ � a2 + �(b2 � a2)� x2�2= (b� x)(x� a)=�2:For example, for the standard symmetri
 random walk on the integers with � = �1 with probability1=2 ea
h, then � = 0, �2 = 1, and for a < x < b, � = P[Xn � b before Xn � a j X0 = x℄ = (x �a)=(b�a) and the exit time � := min[n : Xn =2 (a; b)℄ has expe
tation E[� j X0 = x℄ = (b�x)(x�a).1
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 CaseNow suppose � 6= 0, that P[�j < 0℄ > 0 and P[�j > 0℄ > 0, and that M(t) is smooth enough forthe logarithm m(�) := logM(�) to have Taylor expansion m(�) = ��+ �2�2=2 + o(�2) near zero.Then m(�) ! 1 as � ! �1 while m0(0) = � 6= 0, so there exists some �� 6= 0 (approximately�� � �2�=�2) for whi
h m(��) = 0. For any � 2 R, Yn := e�Xn�nm(�) is a martingale (well, any� for whi
h M(�) < 1) and, in parti
ular, e��Xn is a martingale, so again the optional samplingtheorem gives e��x = E[e��X�^n ℄= E[e��X� ℄� e��a(1� �) + e��b(�);� � e��x � e��ae��b � e��aTo �nd P = P[Xt ever ex
eeds b℄, take a! �1 to �nd P � e���(b�x) < 1, if �� > 0, or P = 1, if�� � 0.Sin
e (Xn � n�) is also a martingale,x = E[X�^n � (� ^ n)�℄= E[X� � ��℄� a(1 � �) + b(�) � E[� ℄�;E[� ℄ � a� x+ �(b� a)� :For example, for the standard asymmetri
 random walk on the integers with � = �1 with probabili-ties p, q = 1�p, respe
tively, then � = q�p, �2 = 4pq, andM(�) = pe�+qe�� = 1+(pe��q)(1�e��)so m(��) = 0 for �� = log q=p. Thus for a < x < b, � = P[Xn � b before Xn � a j X0 = x℄ =((q=p)x � (q=p)a)=((q=p)b � (q=p)a) and the exit time � := min[n : Xn =2 (a; b)℄ has expe
tationE[� j X0 = x℄ = (a�x+�(b�a))=�. If � � 0 (resp., � � 1) this is 
lose to E[� ℄ � (x�a)=� (resp.,E[� ℄ � (b� x)=�), just what you would expe
t for a heavily biased random walk.Sequential Probability Ratio TestLet fYjg be independent, identi
ally-distributed random variables with absolutely-
ontinuous dis-tributions and density fun
tion f(y), and 
onsider the statisti
al problem of trying to tell fromobserved values y1; :::; yn whi
h of two possible density fun
tions ff0; f1g governs the distributionof the fYjg. All of the standard statisti
al tests of the hypothesis H0 : f = f0 against its alternativeH1 : f = f1 make use of the Likelihood Ratio (against the null)Ln := f1(y1) � � � f1(yn)f0(y1) � � � f0(yn) =Yj�n f1(yj)f0(yj)
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STA 711 Week 12 R L WolpertSTA 711 Week 12 R L WolpertSTA 711 Week 12 R L Wolpertor, equivalently, its logarithm `n = Pj�n log(f1(yj)=f0(yj)). For example, the Bayesian posteriorprobability of H0 (starting with prior �0 = P[H0℄, �1 = 1� �0 = P[H1℄) is given byP[H0 j Y1:::Yn℄ = �0f0(y1) � � � f0(yn)�0f0(y1) � � � f0(yn) + �1f1(y1) � � � f1(yn) = (�0=�1)(�0=�1) + LnP[H1 j Y1:::Yn℄P[H0 j Y1:::Yn℄ = �1�0 Ln;so the posterior odds against H0 are the prior odds multiplied by Ln (whi
h in this 
ontext is 
alleda \Bayes fa
tor"), while the Neyman-Pearson Lemma says that the most powerful (frequentist)test of level � is to reje
t H0 whenever Ln � r, where r is 
hosen to ensure that the probability ofa \Type-I error" (reje
ting a true null hypothesis) is no more than P0[Ln � r℄ � � if H0 : f = f0is true (the subs
ript zero on P0 indi
ates that this probability should be 
omputed assuming H0);the \power" of the test is then P1[Ln � r℄, the probability of reje
ting H0 when in fa
t H1 is true,or one minus the probability � = P1[Ln < r℄ of a \Type-II error", failing to reje
t a false nullhypothesis.Only a large sample-size n will ensure that both of these error probabilities will be small, but howlarge n must be will depend on how di�erent f0 and f1 are, something that may be diÆ
ult toanti
ipate. One possibility, initially proposed by Abraham Wald, is to design a sequential test indata are drawn su

essively until the eviden
e be
omes 
ompelling either that H0 is false and mustbe reje
ted (large values of Ln) or that H0 is true and must not be reje
ted (small values of Ln).A simple pro
ess is to sele
t numbers 0 < A < 1 < B and 
ontinue sampling until either Ln � B,in whi
h 
ase we stop and reje
t H0, or Ln � A, in whi
h 
ase we stop sampling and a

ept H0.But this is exa
tly equivalent to drawing samples until the random walk `n := logLn, whi
hstarts at x = log 1 = 0, rea
hes either a lower boundary a := logA < 0 or an upper boundaryb := logB > 0, a problem we have just solved. For this random walk and any � 2 R, under thehypothesis H0, the means of �j := log(f1(Yj)=f0(Yj)) and of exp(��j) are given by:�0 := E0[�j℄ = Z log f1(y)f0(y) f0(y) dy = �K(f0 : f1)M0(�) := E0[e��j ℄ = Z f1(y)� f0(y)1�� dyand under hypothesis H1 they are�1 := E1[�j℄ = Z log f1(y)f0(y) f1(y) dy = K(f1 : f0)M1(�) := E1[e��j ℄ = Z f1(y)1+� f0(y)�� dyso �0 < 0 < �1. The quantity K(f : g) � 0 is the Kullba
k-Leibler divergen
e from f to g, ameasure of how di�erent f and g are; for example, the K-L divergen
e from a standard normaldistribution to the No(�; 1) distribution is �2=2. Also M0(�� := 1) = 1 = M1(�� := �1), so theexit time � := min[n � 0 : `n =2 (a; b)℄ leads to right-exit probability (and Type-I error probability)Page 3Page 3Page 3



STA 711 Week 12 R L WolpertSTA 711 Week 12 R L WolpertSTA 711 Week 12 R L Wolpert� = P0[`� � b℄ and to left-exit probability (and Type-II error probability) � = P1[`� � a℄ of� = P0[`� � b℄ � e0 � eaeb � ea = 1�AB �A� = P1[`� � a℄ � 1� e�0 � e�ae�b � e�a = A(B � 1)B �Awith expe
ted sample-size E0[� ℄ � �(B � 1) logA+ (1�A) logB(B �A)K(f0 : f1)E1[� ℄ � A(B � 1) logA+B(1�A) logB(B �A)K(f1 : f0)In the symmetri
 
ase AB = 1, � = � = 1=(1 +B) = A=(1 +A), andE0[� ℄ = (B � 1) logB(B + 1)K(f0 : f1) E1[� ℄ = (B � 1) logB(B + 1)K(f1 : f0) :Evidently � and � may be made as small as desired by taking A�1 = B = log 1��� suÆ
iently large,but doing so will in
rease the expe
ted sample size to approximately E[� ℄ � log 1�=K(f0 : f1).Exer
ise 1a: Starting with X0 = $80 and betting $1 ea
h turn at even odds, what is the 
han
eof rea
hing b = $100 before going broke (i.e., rea
hing a = $0)? On average, how long will it taketo rea
h one of these?Exer
ise 1b: Same question, but now playing US Roulette with probability p = 9=19 of winningand q = 10=19 of losing ea
h turn.Exer
ise 2: (R.H. Berk, 1966). Suppose that both hypotheses are wrong, and that �j � f(x) dxbut f 6= ff0; f1g. Show that `n is again a random walk, now with drift � = K(f : f1)�K(f : f0)and 
on
lude that, almost surely, Ln ! 0 as n ! 1 if K(f : f0) < K(f : f1) and Ln ! 1 asn!1 if K(f : f0) > K(f : f1). What do you think would happen if K(f : f0) = K(f : f1)?Exer
ise 3a: Find K(f0 : f1) if ea
h fi is No(�i; �2) (di�erent means, same varian
e).Exer
ise 3b: Find K(f0 : f1) if ea
h fi is No(0; �2i ) (same mean, di�erent varian
es).Exer
ise 3
: Find K(f0 : f1) if ea
h fi is Ex(�i), exponentially distributed with rate �i.Exer
ise 3d: Find K(f0 : f1) if ea
h fi is Bi(N; pi), binomial with the same N but possiblydi�erent probabilities pi.
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