
STA 711: Probability & Measure TheoryRobert L. Wolpert12 Martingale Methods: Appliation to SPRTRandom Walks and MartingalesLet f�jg be independent, identially distributed random variables, all with the same mean � = E[�j℄,variane �2 = V[�j ℄, and moment generating funtion M(�) = E[e��j ℄. Under suitable regularityonditions the logarithm m(�) := logM(�) has Taylor expansion m(�) = ��+�2�2=2+ o(�2) nearzero. Let Fn := �f�j : j � ng be the �ltration generated by f�jg.For any x 2 R onsider the sequene Xn = x +Pj�n �j of partial sums, starting at x; Xn is arandom walk starting at x. Fix real numbers a < b and de�ne a fFng-stopping time � = �a;b by� := inffn : Xn =2 (a; b)gand the \right exit probability" by � := P[� < 1 and X� � b℄. Our objet is to ompute � andE[� ℄, the probability of exiting on the right and the expeted exit time, as funtions of x 2 (a; b).The Symmetri CaseFirst suppose � = 0. Then Xn is a martingale, and so (by the optional sampling theorem) is X�^n,whih moreover is bounded and hene uniformly integrable. It follows thatx = E[X�^0℄= limn!1E[X�^n℄= E[X� ℄� a(1� �) + b(�); solving, we �nd� � x� ab� a(the estimates are exat if P[X� 2 fa; bg℄ = 1, but only approximate if there is a hane of\overshooting" the boundary). Also (Xn)2 � n�2 is a martingale, sox2 = E[(X�^0)2 � (� ^ 0)�2℄= E[(X� )2 � ��2℄� a2(1� �) + b2(�) � E[� ℄�2; soE[� ℄ � a2 + �(b2 � a2)� x2�2= (b� x)(x� a)=�2:For example, for the standard symmetri random walk on the integers with � = �1 with probability1=2 eah, then � = 0, �2 = 1, and for a < x < b, � = P[Xn � b before Xn � a j X0 = x℄ = (x �a)=(b�a) and the exit time � := min[n : Xn =2 (a; b)℄ has expetation E[� j X0 = x℄ = (b�x)(x�a).1



STA 711 Week 12 R L WolpertSTA 711 Week 12 R L WolpertSTA 711 Week 12 R L WolpertThe Asymmetri CaseNow suppose � 6= 0, that P[�j < 0℄ > 0 and P[�j > 0℄ > 0, and that M(t) is smooth enough forthe logarithm m(�) := logM(�) to have Taylor expansion m(�) = ��+ �2�2=2 + o(�2) near zero.Then m(�) ! 1 as � ! �1 while m0(0) = � 6= 0, so there exists some �� 6= 0 (approximately�� � �2�=�2) for whih m(��) = 0. For any � 2 R, Yn := e�Xn�nm(�) is a martingale (well, any� for whih M(�) < 1) and, in partiular, e��Xn is a martingale, so again the optional samplingtheorem gives e��x = E[e��X�^n ℄= E[e��X� ℄� e��a(1� �) + e��b(�);� � e��x � e��ae��b � e��aTo �nd P = P[Xt ever exeeds b℄, take a! �1 to �nd P � e���(b�x) < 1, if �� > 0, or P = 1, if�� � 0.Sine (Xn � n�) is also a martingale,x = E[X�^n � (� ^ n)�℄= E[X� � ��℄� a(1 � �) + b(�) � E[� ℄�;E[� ℄ � a� x+ �(b� a)� :For example, for the standard asymmetri random walk on the integers with � = �1 with probabili-ties p, q = 1�p, respetively, then � = q�p, �2 = 4pq, andM(�) = pe�+qe�� = 1+(pe��q)(1�e��)so m(��) = 0 for �� = log q=p. Thus for a < x < b, � = P[Xn � b before Xn � a j X0 = x℄ =((q=p)x � (q=p)a)=((q=p)b � (q=p)a) and the exit time � := min[n : Xn =2 (a; b)℄ has expetationE[� j X0 = x℄ = (a�x+�(b�a))=�. If � � 0 (resp., � � 1) this is lose to E[� ℄ � (x�a)=� (resp.,E[� ℄ � (b� x)=�), just what you would expet for a heavily biased random walk.Sequential Probability Ratio TestLet fYjg be independent, identially-distributed random variables with absolutely-ontinuous dis-tributions and density funtion f(y), and onsider the statistial problem of trying to tell fromobserved values y1; :::; yn whih of two possible density funtions ff0; f1g governs the distributionof the fYjg. All of the standard statistial tests of the hypothesis H0 : f = f0 against its alternativeH1 : f = f1 make use of the Likelihood Ratio (against the null)Ln := f1(y1) � � � f1(yn)f0(y1) � � � f0(yn) =Yj�n f1(yj)f0(yj)
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STA 711 Week 12 R L WolpertSTA 711 Week 12 R L WolpertSTA 711 Week 12 R L Wolpertor, equivalently, its logarithm `n = Pj�n log(f1(yj)=f0(yj)). For example, the Bayesian posteriorprobability of H0 (starting with prior �0 = P[H0℄, �1 = 1� �0 = P[H1℄) is given byP[H0 j Y1:::Yn℄ = �0f0(y1) � � � f0(yn)�0f0(y1) � � � f0(yn) + �1f1(y1) � � � f1(yn) = (�0=�1)(�0=�1) + LnP[H1 j Y1:::Yn℄P[H0 j Y1:::Yn℄ = �1�0 Ln;so the posterior odds against H0 are the prior odds multiplied by Ln (whih in this ontext is alleda \Bayes fator"), while the Neyman-Pearson Lemma says that the most powerful (frequentist)test of level � is to rejet H0 whenever Ln � r, where r is hosen to ensure that the probability ofa \Type-I error" (rejeting a true null hypothesis) is no more than P0[Ln � r℄ � � if H0 : f = f0is true (the subsript zero on P0 indiates that this probability should be omputed assuming H0);the \power" of the test is then P1[Ln � r℄, the probability of rejeting H0 when in fat H1 is true,or one minus the probability � = P1[Ln < r℄ of a \Type-II error", failing to rejet a false nullhypothesis.Only a large sample-size n will ensure that both of these error probabilities will be small, but howlarge n must be will depend on how di�erent f0 and f1 are, something that may be diÆult toantiipate. One possibility, initially proposed by Abraham Wald, is to design a sequential test indata are drawn suessively until the evidene beomes ompelling either that H0 is false and mustbe rejeted (large values of Ln) or that H0 is true and must not be rejeted (small values of Ln).A simple proess is to selet numbers 0 < A < 1 < B and ontinue sampling until either Ln � B,in whih ase we stop and rejet H0, or Ln � A, in whih ase we stop sampling and aept H0.But this is exatly equivalent to drawing samples until the random walk `n := logLn, whihstarts at x = log 1 = 0, reahes either a lower boundary a := logA < 0 or an upper boundaryb := logB > 0, a problem we have just solved. For this random walk and any � 2 R, under thehypothesis H0, the means of �j := log(f1(Yj)=f0(Yj)) and of exp(��j) are given by:�0 := E0[�j℄ = Z log f1(y)f0(y) f0(y) dy = �K(f0 : f1)M0(�) := E0[e��j ℄ = Z f1(y)� f0(y)1�� dyand under hypothesis H1 they are�1 := E1[�j℄ = Z log f1(y)f0(y) f1(y) dy = K(f1 : f0)M1(�) := E1[e��j ℄ = Z f1(y)1+� f0(y)�� dyso �0 < 0 < �1. The quantity K(f : g) � 0 is the Kullbak-Leibler divergene from f to g, ameasure of how di�erent f and g are; for example, the K-L divergene from a standard normaldistribution to the No(�; 1) distribution is �2=2. Also M0(�� := 1) = 1 = M1(�� := �1), so theexit time � := min[n � 0 : `n =2 (a; b)℄ leads to right-exit probability (and Type-I error probability)Page 3Page 3Page 3



STA 711 Week 12 R L WolpertSTA 711 Week 12 R L WolpertSTA 711 Week 12 R L Wolpert� = P0[`� � b℄ and to left-exit probability (and Type-II error probability) � = P1[`� � a℄ of� = P0[`� � b℄ � e0 � eaeb � ea = 1�AB �A� = P1[`� � a℄ � 1� e�0 � e�ae�b � e�a = A(B � 1)B �Awith expeted sample-size E0[� ℄ � �(B � 1) logA+ (1�A) logB(B �A)K(f0 : f1)E1[� ℄ � A(B � 1) logA+B(1�A) logB(B �A)K(f1 : f0)In the symmetri ase AB = 1, � = � = 1=(1 +B) = A=(1 +A), andE0[� ℄ = (B � 1) logB(B + 1)K(f0 : f1) E1[� ℄ = (B � 1) logB(B + 1)K(f1 : f0) :Evidently � and � may be made as small as desired by taking A�1 = B = log 1��� suÆiently large,but doing so will inrease the expeted sample size to approximately E[� ℄ � log 1�=K(f0 : f1).Exerise 1a: Starting with X0 = $80 and betting $1 eah turn at even odds, what is the haneof reahing b = $100 before going broke (i.e., reahing a = $0)? On average, how long will it taketo reah one of these?Exerise 1b: Same question, but now playing US Roulette with probability p = 9=19 of winningand q = 10=19 of losing eah turn.Exerise 2: (R.H. Berk, 1966). Suppose that both hypotheses are wrong, and that �j � f(x) dxbut f 6= ff0; f1g. Show that `n is again a random walk, now with drift � = K(f : f1)�K(f : f0)and onlude that, almost surely, Ln ! 0 as n ! 1 if K(f : f0) < K(f : f1) and Ln ! 1 asn!1 if K(f : f0) > K(f : f1). What do you think would happen if K(f : f0) = K(f : f1)?Exerise 3a: Find K(f0 : f1) if eah fi is No(�i; �2) (di�erent means, same variane).Exerise 3b: Find K(f0 : f1) if eah fi is No(0; �2i ) (same mean, di�erent varianes).Exerise 3: Find K(f0 : f1) if eah fi is Ex(�i), exponentially distributed with rate �i.Exerise 3d: Find K(f0 : f1) if eah fi is Bi(N; pi), binomial with the same N but possiblydi�erent probabilities pi.
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