Sta 711: Homework 9

Uniform Integrability

1. True or false? Answer whether each of the following statements is true or false. If true, answer why; if false, give a simple counter example.

 (a) If \(\{X_n, n \in \mathbb{N}\} \) is a uniformly integrable (UI) collection of random variables, then \(X_n \) is uniformly bounded in \(L_1 \).

 (b) Define a sequence \(\{X_n\} \) of random variables on the unit interval with Lebesgue measure, \((\Omega, \mathcal{F}, P)\) with \(\Omega = (0, 1] \), \(\mathcal{F} = \mathcal{B} \), and \(P = \lambda \), by \(X_n := \sqrt{n}1_{(0, \frac{1}{n}]} \). Then \(\{X_n\} \) is UI.

 (c) Let \(\{X_n\} \) be a sequence of random variables for which \(e^{X_n} \) is uniformly bounded in \(L_1 \), i.e., satisfies \(E|X_n| \leq B \) for some \(B < \infty \) and all \(n \). Then \(\{X_n\} \) is UI.

 (d) Let \(\{X_n\} \) be a sequence of random variables that is uniformly bounded in \(L_1 \), i.e., satisfies \(E|X_n| \leq B \) for some \(B < \infty \) and all \(n \). Then \(\{X_n\} \) is UI.

Characteristic Functions

2. Let \(X \) be a random variable, and define
 \[
 \phi_X(\theta) := E(e^{i\theta X}), \quad \theta \in \mathbb{R}
 \]
 Show that \(\phi_X(\theta) \) is uniformly continuous in \(\mathbb{R} \).

3. Find the characteristic functions of the following random variables:
 (a) \(W := c^1 \) (The superscripts in (a)-(c) are footnote indicators, not exponents)
 (b) \(X \sim \text{Un}(a, b)^2 \)
 (c) \(Y \sim \text{Ga}(\alpha, \lambda)^3 \)
 (d) \(Z_n = (Y_1 + Y_2 + \cdots + Y_n)/n, \quad Y_j \sim \text{Ga}(\alpha, \lambda) \)

 What is the distribution of \(Z_n \)? What happens as \(n \to \infty \)?

4. The distribution of a random variable \(X \) is called infinitely divisible if, for every \(n \in \mathbb{N} \), there exist \(n \) iid random variables \(\{Y_i\} \) such that \(X \) has the same distribution as \(\sum_{i=1}^n Y_i \). Use characteristic functions to show that if \(X \sim \text{Po}(\lambda) \), then \(X \) is infinitely divisible.\(^4\)

\(^1\)A constant random variable with value \(c \in \mathbb{R} \)

\(^2\)Uniform, on the interval \((a, b) \subset \mathbb{R} \)

\(^3\)Gamma, with rate parameterization — with pdf \(f(y | \lambda) = \lambda^\alpha y^{\alpha-1} e^{-\lambda y} / \Gamma(\alpha), y > 0. \)

\(^4\)Hint: If \(\{Y_i\} \) are independent with sum \(Y_+ := \sum Y_i \), then \(\phi_{Y_+}(\theta) = \prod \phi_{Y_i}(\theta) \) for all \(\theta \in \mathbb{R} \).
5. Suppose \(\{A_n, n \in \mathbb{N}\} \) are independent events satisfying \(\mathbb{P}(A_n) < 1, \forall n \in \mathbb{N} \). Show that \(\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = 1 \) if and only if \(\mathbb{P}(A_n \text{ i.o.}) = 1 \) (“i.o.” means “infinitely often”, so the question concerns lim sup \(A_n \)). Give an example to show that the condition \(\mathbb{P}(A_n) < 1 \) cannot be dropped.

6. Let \(\{A_n\} \) be a sequence of events with \(\mathbb{P}(A_n) \to 1 \) as \(n \to \infty \). Prove that there exists a subsequence \(\{n_k\} \) tending to infinity such that \(\mathbb{P}(\cap_k A_{n_k}) > 0 \).

7. Let \(A_n \) be a sequence of events that all satisfy \(\mathbb{P}(A_n) \geq \epsilon \) for some \(\epsilon > 0 \). Does there necessarily exist a subsequence \(\{n_k \to \infty\} \) with \(\mathbb{P}(\cap_k A_{n_k}) > 0 \)? Why or why not?

8. Let \(\{X_n\} \) be non-negative iid random variables, with tail \(\sigma \)-field

\[
\mathcal{T} := \bigcap_{n \in \mathbb{N}} \mathcal{F}_n', \quad \mathcal{F}_n' := \sigma\{X_m : m > n\}
\]

Is the event

\[
E = \{\text{There exists } \epsilon > 0 \text{ such that } X_n > n\epsilon \text{ for infinitely-many } n\}
\]

\[
= \bigcup_{\epsilon > 0} \bigcap_{n \geq 1} \bigcup_{m \geq n} \{\omega : X_m(\omega) > m\epsilon\}
\]

in \(\mathcal{T} \)? Prove or disprove it.

Express the probability \(\mathbb{P}[E] \) in terms of the random variables’ common distribution— for example, using their common CDF \(F(x) := \mathbb{P}[X_n \leq x] \) or moments \(\mathbb{E}[|X_n|^p] \) for some \(p > 0 \).