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Informally a martingale is simply a family of random variables (or a sto
hasti
 pro
ess)

fM

t

g de�ned on some probability spa
e (
;F ;P) and indexed by some ordered set T that

is \
onditionally 
onstant," i.e., whose predi
ted value at any future time s > t is the same

as its present value at the time t of predi
tion. The set T of possible indi
es t 2 T is usually

taken to be the nonnegative integers N

0

or the nonnegative reals R

+

, although sometimes Z

or R or other ordered sets arise. Formally we represent what is known at time t in the form

of an in
reasing family of �-algebras (or a �ltration) fF

t

g � F , possibly generated by some

pro
ess fX

s

: s � tg or even by the martingale itself, F

M

t

= �fM

s

: s � tg (this one is 
alled

the natural �ltration). We require that EjM

t

j <1 for ea
h t (so the 
onditional expe
tation

below is well-de�ned) and that

M

t

= E[M

s

j F

t

℄; t < s:

It follows that fM

t

g is adapted to fF

t

g, i.e.,M

t

is F

t

-measurable for ea
h t. For integer-time

pro
esses, like fun
tions of random walks or Markov 
hains, it is only ne
essary (by the tower

property) to take s = t + 1. Usually we take F

t

= �[X

i

: i � t℄ for some pro
ess of interest

X

t

(perhaps M

t

itself, although in general F

t


an be bigger than that) and write

M

t

= E[M

t+1

j X

0

; :::; X

t

℄:

There are several \big theorems" about martingales that make them useful in statisti
s and

probability theory. Most of them are simple to prove for dis
rete time T = N

0

, and true but

more 
hallenging for 
ontinuous time T = R

+

, so our text (Resni
k, 1998, 
hap. 10) 
overs

only integer-time martingales.

1 Optional Stopping Theorem

A random \time" � : 
! T is an F

t

-stopping time or a Markov time if for ea
h t 2 T the

event [� � t℄ is in F

t

; informally, � \doesn't depend on the future." For dis
rete time sets

T , � is a stopping time if and only if [� = t℄ 2 F

t

for ea
h t 2 T (
an you prove that?).
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If � is a stopping time and if M

t

is a martingale, then M

t^�

is a martingale too. The proof

is easy for integer-time martingales:

E[M

(t+1)^�

j F

t

℄ = E[M

�

1

[��t℄

+M

t+1

1

[�>t℄

j F

t

℄

=M

�

1

[��t℄

+ 1

[�>t℄

E[M

t+1

j F

t

℄

=M

�

1

[��t℄

+ 1

[�>t℄

M

t

=M

t^�

:

1.1 Appli
ation: Simple Random Walks

Fix 0 < p < 1 and let f�

j

g be iid �1-valued random variables with P[�

j

= 1℄ = p and

P[�

j

= �1℄ = q := (1� p) (hen
e E�

j

= p� q and V�

j

= 4pq). Set F

n

:= � f�

j

: j � ng, let

x 2 Z, and set:

X

n

:= x +

X

j�n

�

j

; (1)

a random walk that is either symmetri
 (if p =

1

2

) or not (if p 6=

1

2

). Set � := (p�q) and


onsider for n 2 N

0

= f0; 1; : : :g the three pro
esses

M

(1)

n

= X

n

� �n (2a)

M

(2)

n

= (X

n

� �n)

2

� 4pq n (2b)

M

(3)

n

= (q=p)

X

n

(2
)

Verify that ea
h of these is a martingale by 
omputing E[M

(i)

n+1

j F

n

℄ = M

(i)

n

and ap-

plying the tower property and indu
tion. For integers a � x and b � x, verify that

� := inf

�

t � 0 : X

t

=2 (a; b)

	

is a stopping time, �nite a.s. by Borel-Cantelli.

Gambler's Ruin

Starting with a fortune of $x and repeatedly betting $1 at even odds at a game where the

probabilities of winning and losing are p and q := (1�p), what is the probability of \winning"

by rea
hing a spe
i�ed goal b > x before losing by falling to a spe
i�ed limit a < x?

Let W := [� <1℄ \ [X

�

= b℄ be the event that X

t

exits (a; b) to the right, i.e., that X

t

� b

before X

t

� a. If p =

1

2

= q (the symmetri
 
ase) then � = 0 and by DCT

x = E[M

(1)

0

℄ = lim

t!1

E[M

(1)

t^�

℄

= E[M

(1)

�

℄ = bP[W ℄ + aP[W




℄

= (b� a)P[W ℄ + a;

so the probability of winning is

P[W ℄ =

x� a

b� a

: (3)
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Thus in a \fair" game the odds of rea
hing b before falling to a, starting at x 2 (a; b),

in
reases linearly from zero at a to one at b. For an un-fair game, i.e., if p 6= q, then

(p=q)

b

6= (p=q)

a

and again by DCT,

(q=p)

x

= E[M

(3)

0

℄ = lim

t!1

E[M

(3)

t^�

℄ = E[M

(3)

�

℄

= (q=p)

b

P[W ℄ + (q=p)

a

P[W




℄

=

�

(q=p)

b

� (q=p)

a

�

P[W ℄ + (q=p)

a

; so

P[W ℄ =

(q=p)

x

� (q=p)

a

(q=p)

b

� (q=p)

a

=

(p=q)

b�x

� (p=q)

b�a

1� (p=q)

b�a

(4)

� (p=q)

b�x

if b� a and p <

1

2

< q.

For example, for 1:1 bets in US roulette whi
h win with probability p = 9=19 and lose with

probability q = 10=19, the 
han
e of winning by rea
hing b = $100 before falling to a = $0

with one-dollar bets beginning at x = $90 is P[W ℄ = (0:9

10

� 0:9

100

)=(1� 0:9

100

) = 0:34866,

and the 
han
e of rea
hing $100 before $0 starting at x = $50 is P[W ℄ = (0:9

50

�0:9

100

)=(1�

0:9

100

) = 0:00513, while these would be 90% and 50% in a fair game. It's surprising to most

of us what a dramati
 di�eren
e the seemingly small departure of p � 0:474 and q � 0:526

from 0:500 makes.

Martingale M

(2)

t


an help us �nd the expe
ted duration of a fair game. For p =

1

2

= q, � = 0

and 4pq = 1, so

x

2

= M

(2)

0

= lim

t!1

E[M

(2)

t^�

℄ = E[M

(2)

�

℄

= E[X

�

2

� � ℄

= b

2

P[W ℄ + a

2

P[W




℄� E[� ℄

=

b

2

(x� a) + a

2

(b� x)

b� a

� E[� ℄

= (a+ b)x� ab� E[� ℄ so

E[� ℄ = (a+ b)x� ab� x

2

= (b� x)(x� a): (5)

The expe
ted time until X

t

= 100 or X

t

= 0 starting at x = 90 is 900 turns and starting

at x = 50 is 2500 turns, or 30 and 83 hours respe
tively at a typi
al rate of two turns per
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minute. For unfair games we 
an �nd E� from M

(1)

�

:

x = M

(1)

0

= lim

t!1

E[M

(1)

t^�

℄ = E[M

(1)

�

℄

= E[X

�

� �� ℄

=

b[(q=p)

x

� (q=p)

a

℄ + a[(q=p)

b

� (q=p)

x

℄

(q=p)

b

� (q=p)

a

� �E[� ℄; so

E� =

(b� x)[(q=p)

x

� (q=p)

a

℄ + (a� x)[(q=p)

b

� (q=p)

x

℄

�[(q=p)

b

� (q=p)

a

℄

=

(b� x)[(p=q)

b�x

� (p=q)

b�a

℄� (x� a)[1� (p=q)

b�x

℄

(p� q)[1� (p=q)

b�a

℄

(6)

or approximately E� � (x � a)=(q � p) for a � b and p < q. For US roulette, E� = 1047:5

for x = 90 (with a slim 35% 
han
e of winning) and E� = 940:258 for x = 50 (with about a

1=200 
han
e). Larger bets make the game go qui
ker and improve the 
han
e of winning;

for $10 bets, set a = 0, b = 10 and try x = 5, x = 9 to see the probability of winning in
rease

to P[W ℄ = 37% or 87% with E[� ℄ = 24:46 or 10:17, respe
tively, mu
h 
loser to the values

50%, 90% for P[W ℄ and 25, 10 for E� in a fair game. Even faster (and more favorable) is

the optimal strategy of bold play, betting x ^ (b� x) ea
h time; for x = 50 this amounts to

betting all $50 at on
e (E[W ℄ = 9=19 = 47:37%, E� = 1) while for x = $90, E[W ℄ = 87:94%.

Upon taking the limit as a ! �1 in Eqns (3, 4) we �nd that P[X

t

� b for any t < 1℄

has probability one if p �

1

2

, but for p <

1

2

the probability is (p=q)

b�x

< 1; thus even an

in�nitely-ri
h patron has only a 0:9

10

= 34:8678% 
han
e of winning $10 in US roulette with

su

essive $1 bets. The expe
ted time to rea
h b > x is in�nite for p �

1

2

, but for p >

1

2

the

expe
ted time is �nite, E[� ℄ = (b� x)=(p� q) <1.

1.1.1 Other Random Walks

More generally we 
an 
onstru
t a pro
ess X

n

as in (1) for any iid f�

j

g � L

2

and martingales

M

(k)

n

as in (2), with � = E�

j

in (2a), repla
ing 4pq with �

2

= V�

j

in (2b), and repla
ing

(q=p) with e

t

�

where t

�

6= 0 is the solution to M(t

�

) = 1 for the MGF M(t) of �

j

(t

�

< 0 if

� > 0, t

�

> 0 if � < 0). Now the probabilities of Eqns (3, 4) and expe
tations of Eqns (5, 6)

will only be approximate, sin
e X

�

won't be exa
tly a or b. Abraham Wald (1945) studied

the dis
repan
y in some detail, motivated by the following important appli
ation, the key

to modern sequential 
lini
al trials.

1.2 The SPRT Sequential Statisti
al Test

If iid random variables fY

j

g are known to 
ome from one of two possible distributions, with

densities (w.r.t. any �-�nite referen
e measure) f

0

and f

1

, the likelihood ratio (against the

Page 4Page 4Page 4
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Null) for the �rst n observations is

�

n

:=

Y

j�n

f

1

(Y

j

)

f

0

(Y

j

)

:

In Wald's Sequential Probability Ratio Test (SPRT), one observes data sequentially until

�

n

passes an upper boundary U 2 (1;1) (in whi
h 
ase the null hypothesis H

0

: Y

j

iid

�

f

0

(y) dy is reje
ted) or a lower boundary L 2 (0; 1) (in whi
h 
ase the test fails to re-

je
t H

0

). The test has optimality properties (Wald and Wolfowitz, 1948) similar to those

of �xed-sample-size likelihood ratio tests (Neyman and Pearson, 1933). The logarithm

X

n

= log�

n

is a random walk under both f

0

and f

1

, and � := inf fn : �

n

=2 (L; U)g =

inf fn : X

n

=2 (a := logL; b := logU)g is Wald's stopping time, so the results of Se
tion (1.1.1)

apply. In addition, �

n

itself is a martingale under f

0

, as is �

�1

under f

1

, giving 
onvenient

tools for bounding the probability of in
orre
t hypothesis-test results or the expe
ted dura-

tion of a sequential test: the approximate size � = P

0

[�

�

� U ℄, power [1� �℄ = P

1

[�

�

� U ℄

are:

� � (1� L)=(U � L) 1� � � U(1� L)=(U � L)

so any desired size and power 
an be obtained by setting

L � �=(1� �) U � (1� �)=�

The approximate expe
ted sample sizes S

0

(under f

0

) and S

1

(under f

1

) 
an be found by

applying martingale methods to the random walk X

n

:= log�

n

, whose iid steps have means

�

i

(so (X

n

� n�

i

) is a martingale) given by

�

0

= �K(f

0

: f

1

) �

1

= K(f

1

: f

0

);

S

0

�

� logU + (1� �) logL

�

0

S

1

�

(1� �) logU + � logL

�

1

under distribution fY

j

g

iid

� f

i

for i = 0; 1 respe
tively. Here

K(f : g) :=

Z

log

f(y)

g(y)

f(y) dy

denotes the Kullba
k-Leibler divergen
e from f to g, a measure of the dis
repan
y between

two distributions with pdfs f , g. If f

0

and f

1

are rather similar, then �

0

and �

1

will be small

and the sample sizes S

0

or S

1

needed to attain small size � and large power (1� �) will be

large.

A Bayesian with prior P[H

0

℄ = �

0

would report posterior probability P[H

0

j Data ℄ =

(1+

�

1

�

0

�

�

)

�1

, or about �

0

=(�

0

+�

1

a) if X

�

� a and �

0

=(�

0

+�

1

b) if X

�

� b, lending guidan
e

about the sele
tion of a and b. By Doob's maximal inequality, for 0 < �; � < 1 the SPRT

with L = � and U = 1=� will satisfy P[ Reje
t H

0

j H

0

℄ � � and P[ Reje
t H

0

j H

1

℄ � 1��,

the 
lassi
al Frequentist error bounds.
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2 Martingale Path Regularity

IfM

t

is a martingale and a < b are real numbers, denote by �

(t)

[a;b℄

the number of \up
rossings"

of the interval [a; b℄ by M

s

prior to time t, i.e., the number of times M

s

passes from below a

to above b at times 0 � s � t. Then:

E

h

�

(t)

[a;b℄

i

�

EjM

t

j+ jaj

b� a

and, in parti
ular, martingale paths don't os
illate in�nitely often| they have left and right

limits at every point. This is also the key lemma for proving the Martingale Convergen
e

Theorem below. Here's the idea, attributed to both Doob and to Snell:

Set �

0

:= 0 and, for n 2 N , de�ne

�

n

:= infft > �

n�1

: M

t

� ag

�

n

:= infft > �

n

: M

t

� bg;

or in�nity if the indi
ated event never o

urs (i.e., we take inff;g = 1). De�ne a pro
ess

Y

t

by

Y

t

:=

X

n2N

[M

t^�

n

�M

t^�

n

℄:

Starting with the �rst time �

1

that M

t

� a, Y

t

a

umulates the in
rements of M

t

until the

�rst time �

1

that M

t

� b; the pro
ess 
ontinues if the martingale M

t

� a again falls below a

(at time �

2

), and so forth. All the terms vanish for n large enough that �

n

> t, so there are

at most 1 + �

(t)

[a;b℄

non-zero terms, ea
h at least [b� a℄ ex
ept possibly the last if �

n

< t < �

n

for some n. Then

Y

t

:=

X

n2N

[M

t^�

n

�M

t^�

n

℄

� (b� a)�

(t)

[a;b℄

+ [M

t

� a℄

EY

t

� (b� a)E�

(t)

[a;b℄

+ E[M

t

� a℄

� (b� a)E�

(t)

[a;b℄

� E(M

t

� a)

�

� (b� a)E�

(t)

[a;b℄

� EjM

t

j � jaj:

By the Optional Stopping Theorem, Y

t

is a martingale and hen
e EY

t

= EY

0

= 0; it follows

that E�

(t)

[a;b℄

�

�

EjM

t

j+ jaj

�

=(b� a).

The important 
on
lusion is that E�

(t)

[a;b℄

<1, so �

(t)

[a;b℄

is almost-surely �nite| leading to:

Theorem 1 (Martingale Path Regularity) Let M

0

t

be a martingale with index set T =

R

+

. Then with probability one, M

0

t

has limits from the left and from the right at every point

t 2 T , and at ea
h t is almost-surely equal to the right-
ontinuous pro
ess M

t

:= lim

s&t

M

0

s

.

If the �ltration is right-
ontinuous, F

t

= \

s>t

F

s

, then M

t

is also a martingale.
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If M

t

is uniformly bounded in L

1

, EjM

t

j � 
 <1 for all t 2 T , then by Fatou's lemma we


an even take t!1 so E�

(1)

[a;b℄

� [
 + jaj℄=(b� a) <1, and the number of times �

(1)

[a;b℄

that

M

t

ever 
rosses the interval [a; b℄ is almost-surely �nite. This is the key for proving:

3 Martingale Convergen
e Theorems

Theorem 2 (Martingale Convergen
e Theorem) Let M

t

be an L

1

-bounded martingale

(so for some 
 2 R

+

it satis�es EjM

t

j � 
 for all t 2 T ). Then there exists a random variable

M

1

2 L

1

su
h that M

t

!M

1

a.s. as t!1. If fM

t

g is Uniformly Integrable (for example,

if (8t 2 T )EjM

t

j

p

� 


p

for some p > 1 and 


p

> 0), then also M

t

!M

1

in L

1

.

Proof. De�ne M

1

:= lim inf

t!1

M

t

and M

1

:= lim sup

t!1

M

t

. Suppose (for 
ontradi
-

tion) that P[M

1

= M

1

℄ < 1. Then there exist numbers a < b for whi
h P[M

1

< a < b <

M

1

℄ > 0. But �

(1)

[a;b℄

= 1 on this event, 
ontradi
ting E�

(1)

[a;b℄

�

�


 + jaj

�

=(b� a) < 1. The

result about UI martingales now follows by the UI 
onvergen
e theorem.

Corollary 1 Let M

t

be a martingale and � a stopping time. Then

EM

0

= EM

�

if either fM

t

g is uniformly integrable, or if E� <1 and jM

s

�M

t

j � 
js� tj a.s. for some


 <1.

Proof. Obviously M

�

= lim

t!1

M

t^�

a.s; the family fM

t^�

g will be UI under either of the

stated 
onditions.

Note that some 
ondition is ne
essary in the Corollary above. The simple symmetri
 random

walk S

0

= 0, S

n+1

= S

n

� 1 (with probability 1=2 ea
h) is a martingale, and the hitting time

� := infft : S

t

= 1g is a stopping time that is almost-surely �nite, but

E[S

�

℄ = 1 6= 0 = E[S

0

℄

so the 
on
lusion of Corollary 1 fails. Note that S

n

is not UI here, and jS

s

� S

t

j � js� tj is

linearly bounded, but E� =1. For another example, let X � Ge(

1

2

) be a geometri
 random

variable with P[X = x℄ = 2

�x�1

for x 2 N

0

, and setM

t

:= 2

t

1

fX�tg

. ThenM

t

is a martingale

starting at M

0

= 1, � = X + 1 = infft : M

t

= 0g is a stopping time with �nite expe
tation

E[� ℄ = 2, but

E[M

�

℄ = 0 6= 1 = E[M

0

℄:

Again M

t

is not UI, and this time E� <1 but jM

s

�M

t

j is not bounded linearly in js� tj.
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Theorem 3 (Ba
kwards Martingale Convergen
e Theorem) Let fM

t

g be a martin-

gale indexed by Z or R (or just the negative half-line Z

�

or R

�

). Then, without any further


onditions, there exists a random variable M

�1

2 L

1

(
;F ;P) su
h that

lim

t!�1

M

t

= M

�1

a.s: and in L

1

(
;F ;P):

The strong law of large numbers for i.i.d. L

1

random variables X

n

is a 
orollary: for n 2 N ,

de�ne S

n

:=

P

n

j=1

X

j

and M

�n

=

�

X

n

= S

n

=n. Verify that M

t

is a martingale for the

�ltration F

t

= �fM

s

: s � tg (note X

n

is F

�n+1

-measurable but not F

�n

-measurable), and

that fM

�1

is in the tail �eld and hen
e (by Kolmogorov's 0=1 law) is almost-surely 
onstant.

Evidently the 
onstant is �, so X

n

! � a.s. as n!1.

4 Martingale Problem for Markov Chains

In Se
tion (1.1) we found a parti
ular fun
tion �(x) = (q=p)

x

whi
h, when evaluated along the

random walk X

n

, would yield a pro
ess M

(3)

n

= �(X

n

) that was a martingale. In this se
tion

we 
onsider the general question of �nding fun
tions �(�) for whi
h �(X

t

) is a martingale

for spe
i�ed Markov 
hains X

t

| or, more general still, of how to 
reate martingales from

pro
esses of the form �(X

t

)� A

t

for \any" fun
tion �.

A dis
rete time Markov 
hain is a pro
ess X

n

indexed by the nonnegative integers n 2 T :=

N

0

and taking values in a dis
rete state spa
e S with the property that, for ea
h n 2 T ,

the 
onditional probability P[A j F

n

℄ of any \future" event A 2 F

n

:= � fX

t

: t � ng,

given the \past" F

n

:= � fX

t

: t � ng, depends only on the \present" X

n

| i.e., is �(X

n

)-

measurable. Random walks (like the simple random walk of Se
tion (1.1)) are important

examples of Markov 
hains, but others abound. The distribution of a Markov Chain is

determined by the initial distribution p

(0)

j

= P[X

0

= j℄ for j 2 S and the transition matrix

P

(t)

jk

= P[X

t+1

= k j X

t

= j℄ for all t 2 T and pairs j; k 2 S. In the important stationary


ase P

(t)

jk

= P

jk

doesn't depend on t, so p

(0)

j

= P[X

t

= j℄ for every t 2 T and n-step transition

probabilities P[X

t+n

= k j X

t

= j℄ = P

n

jk

are given by simple matrix powers.

Let X

n

be a stationary Markov 
hain with transition matrix P on a dis
rete (but not ne
-

essarily �nite) state spa
e S. Then for �(X

n

) to be a martingale we need for ea
h j 2 S

0 = E[�(X

1

)� �(X

0

) j X

0

= j℄

= A�(j) :=

X

k 6=j

P

jk

[�(k)� �(j)℄;

for the operator A 
alled the generator of the pro
ess. In this 
ase � is said to be harmoni
.

Even if � is not harmoni
, we 
an still 
onstru
t a martingale by subtra
ting pre
isely the

right thing:

M

�

(t) := �(X

t

)�

X

0�s<t

A�(X

s

)
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will always be a martingale, starting at �(X

0

). In fa
t, this property 
hara
terizes the

Markov 
hain X

t


ompletely, and is the modern way of de�ning the Markov pro
ess.

4.1 Martingale Problems

In both dis
rete and 
ontinuous time, the most powerful and general way known for 
on-

stru
ting Markov pro
esses and exploring their properties is to view them as solutions to

a Martingale Problem. We des
ribe it for dis
retely-distributed pro
esses X

t

, but similar


hara
terizations apply to Markov pro
esses with 
ontinuous marginal distributions.

4.2 Dis
rete Time

Let P

(t)

jk

be a (possibly time-dependent) Markov transition matrix on a state spa
e S indexed

by T = N

0

or T = Z, so (8j; k 2 S) and (8t 2 T ),

P

(t)

jk

� 0 and

X

k2S

P

(t)

jk

= 1:

Then an S-valued pro
ess X

t

indexed by t 2 T is a Markov 
hain with transition matrix

P

(t)

jk

if and only if it solves the dis
rete-time Martingale Problem: for all bounded fun
tions

� : S ! R, the pro
ess

M

�

(t) := �(X

t

)� �(X

0

)�

X

0�s<t

X

j 6=i=X

s

P

(s)

ij

[�(j)� �(i)℄

must be a martingale indexed by t 2 T . In the homogeneous 
ase where P

(t)

jk

� P

jk

doesn't

depend on t, the n-step transition probability is simply the matrix power P

n

, and the

operator

G�(i) =

X

j 6=i

P

ij

[�(j)� �(i)℄

is 
alled the generator of the pro
ess. The fun
tion � is 
alled harmoni
 if G� � 0, in whi
h


ase �(X

t

) itself is a martingale.

4.2.1 Example: Simple Random Walks

For the symmetri
 random walk on Z, for example, G�(x) =

1

2

[�(x+1)� 2�(x)+ �(x� 1)℄,

half the se
ond-di�eren
e operator, so all aÆne fun
tions �(x) = a+ bx (and only they) are

harmoni
. Now we'll 
onsider asymmetri
 walks.

Let X

t

be the simple random walk (1) starting at X

0

= x with P[�

j

= 1℄ = p and P[�

j

=

�1℄ = q := (1�p) with 0 < p < 1. To be harmoni
 a fun
tion � must satisfy 0 � A�(x) =

p[�(x+1)��(x)℄�q[�(x)��(x�1)℄, so by indu
tion [�(x)��(x�1)℄ = (q=p)

x

[�(1)��(0)℄.

Summing the geometri
 series shows that all solutions are of the form �(x) = a+ b(q=p)

x

for

p 6= q, and (as before) �(x) = a+ bx for p = q =

1

2

.
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This and the martingale maximal inequality lead to simple proofs of things about the random

walk| for example, if p < q (so X

t

is more likely to de
rease than in
rease) and a > x, then

for t > 0,

P[ sup

0�s�t

X

s

� a℄ = P[ sup

0�s�t

(q=p)

X

s

� (q=p)

a

℄

�

(q=p)

x

(q=p)

a

= (p=q)

a�x

:

Taking the supremum over all t > 0 (sin
e the bound doesn't depend on t), we see that the

probability of ever ex
eeding a de
reases geometri
ally. With a little more work, we 
an �nd

ex
eeden
e probabilities for lines a + bt too:

Let b 2 R and set Y

t

:= X

t

� bt where X

t

is the simple random walk of Se
tion (1.1). Then

Y too is a Markov 
hain, and the fun
tion �(x) = r

x

will be harmoni
 for Y if r satis�es

0 = A�(x) = p�(x+ 1� b)� �(x) + q�(x� 1� b)

= r

x�1�b

[pr

2

� r

1+b

+ q℄:

The term in bra
kets

h(r) := pr

2

� r

1+b

+ q

vanishes at r = 1 and tends to in�nity as r ! �1. Its derivative at r = 1 is h

0

(1) = (�� b)

for � = (p� q) = (2p� 1); if this doesn't vanish, then there must exist another root r

�

6= 1

of h(r

�

) = 0 for whi
h A� � 0 and hen
e M

�

(t) := r

X

t

�bt

�

is a martingale starting at

M

�

(0) = r

x

�

. By the Martingale Maximal Inequality (MMI, Theorem4 on p. 13), for any

a; b 2 R,

P

�

sup

0�s�t

fX

s

� bsg � a

�

= P

�

sup

0�s�t

fr

Y

s

�

g � r

a

�

�

� r

x�a

�

; (7)

giving a bound for the probability that the random walk X

s

ever 
rosses the line y = a+ bs

(sin
e the bound doesn't depend on t < 1). In the Roulette example, with p = 9=19 and

b = 0 we have r

�

= q=p = 10=9, so (7) implies

P[X

t

ever ex
eeds a℄ � (9=10)

a�x

;

the same bound as before. Now, however, we have new results like

P[X

t

ever ex
eeds (a+ t=2)℄ � (3:382975)

x�a

for a symmetri
 random walk and a � x, sin
e r

�

� 3:382975 is the solution r 6= 1 to

h(r) = [

1

2

r

2

� r

3=2

+

1

2

℄ = 0.

4.2.2 General Random Walks

Now let f�

j

g be iid from any distribution with a MGF M(t) = E[e

t�

j

℄ that is �nite in some

interval around zero. Let X

n

:= x +

P

j�n

�

j

be a random walk starting at x 2 R, and let
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a; b 2 R. Then for any t 2 R for whi
h M(t) is �nite,

Y

n

:= exp ftX

n

� n logM(t)g

is a martingale and, for any t

�

su
h that M(t

�

) = e

t

�

b

, so is

Y

�

n

:= exp ft

�

(X

n

� nb)g :

By the MMI,

P [X

n

ever ex
eeds a+ b n℄ = P

�

sup

n�0

(X

n

� n b) � a

�

= P

�

sup

n�0

Y

�

n

� e

t

�

a

�

� exp ft

�

(x� a)g :

For example, if �

j

iid

� No(�; �

2

) then M(t) = e

t�+t

2

�

2

=2

is �nite for all t 2 R and the equation

M(t

�

) = e

t

�

�+t

2

�

�

2

=2

= e

t

�

b

is satis�ed for t

�

= 0 or t

�

= 2(b � �)=�

2

. The �rst of these gives a trivial bound but the

se
ond gives

P [X

n

ever ex
eeds a + b n℄ � exp

�

2(b� �)(x� a)=�

2

	

or, for x = � = 0 < a, simply exp f�2ab=�

2

g. This same bound, as it happens, applies to

Brownian motion with drift. Exer
ise: Find a bound for the probability that a unit-rate

Poisson random walk X

t

ever ex
eeds 1 + 2t (Ans: exp(�1:256431) = 0:2846682).

4.3 Continuous Time

Similar bounds are available for Markov pro
esses indexed by 
ontinuous time T = R

+

, su
h

as Brownian motion and 
ontinuous-time Markov 
hains.

Let Q

(t)

jk

be a (possibly time-dependent) 
ontinuous-time Markov transition rate matrix on

a dis
rete state spa
e S, i.e., a family of matri
es on S � S that for ea
h t 2 T satis�es

(8j 6= k 2 S) Q

(t)

jk

� 0 and (8j 2 S)

X

k2S

Q

(t)

jk

= 0:

Then an S-valued pro
ess X

t

is a Markov 
hain with rate matrix Q

(t)

jk

if and only if it solves

the 
ontinuous-time Martingale Problem: for all bounded fun
tions � : S ! R, the pro
ess

M

�

(t) := �(X

t

)�

Z

t

0

h

X

j 6=i=X

s

Q

(s)

ij

[�(j)� �(i)℄

i

ds
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must be a martingale starting at M

�

(0) = �(x). In the homogeneous 
ase where Q

(t)

jk

� Q

jk

doesn't depend on t, the time-t transition probability is simply the matrix exponential P

t

=

exp(t Q) =

P

n�0

t

n

n!

Q

n

. The operator

G�(i) :=

X

j2S

Q

ij

[�(j)� �(i)℄

is 
alled the (in�nitesimal) generator of the pro
ess, and M

�


an be written

M

�

(t) := �(X

t

)�

Z

t

0

G�(X

s

) ds:

If � is harmoni
, then �(X

t

) is a martingale. A similar approa
h works for pro
esses with


ontinuous marginal distribution: for Brownian Motion in R

d

, for example, G�(x) =

1

2

��(x),

half the Lapla
ian, illustrating why fun
tions that satisfy G� � 0 are 
alled harmoni
.

4.3.1 Example: SII Jump Pro
esses

The unit-rate Poisson pro
ess N(t) is 
hara
terized by its initial value of 0 and its generator

G�(x) = [�(x + 1)� �(x)℄. The sum

X

t

=

X

j

u

j

N

j

(�

j

t)

of independent Poisson pro
esses with rates �

j

> 0 and jump sizes u

j

2 R is also a 
ontinuous

time Markov pro
ess, with generator given by

G�(x) =

X

j

[�(x+ u

j

)� �(x)℄ �

j

=

Z

R

[�(x+ u)� �(x)℄ �(du) (8)

for � 2 C

1

b

(R), for the dis
rete measure �(du) :=

P

j

u

j

Æ

�

j

(du). The log 
h.f. is

log Ee

i!X

t

=

Z

R

�

e

i!u

� 1

�

�(du): (9)

A
tually Eqns (8, 9) 
ontinue to be well-de�ned and determine the distribution of a Markov

pro
ess X

t

with stationary independent in
rements (SII) for any �nite Borel measure �(du)

on R or, sin
e both integrands vanish to �rst order at zero, even for in�nite \L�evy measures"

�(du) that satisfy the \lo
al L

1


ondition"

Z

R

(1 ^ juj) �(du) <1: (10)
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One example is the gamma pro
ess X

t

� Ga(�dt; �) whose L�evy measure is given by �(du) =

�u

�1

e

��u

1

fu>0g

du, and whose independent in
rements

[X

t

�X

s

℄ � Ga(�(t� s); �)

have gamma distributions. Another is the symmetri
 �-stable (S�S) pro
ess X

t

� St(�; 0; 
t; 0)

with �(du) =

�


�

�(�) sin(

��

2

) juj

���1

du, with �-stable in
rements. Eqn (10) is only satis�ed

for 0 < � < 1, but the approa
h 
an be extended to 
over the entire range of 0 < � < 2

(in
luding the Cau
hy, � = 1) using \
ompensation". Ask me if you'd like to know more.

5 Maximal Inequalities

Under mild 
onditions, the suprema of martingales over �nite and even in�nite intervals

may be bounded; this makes them extremely useful for bounding the growth of pro
esses.

The usual bounds are of two kinds: bounds on the probability that a martingale M

t

(or its

absolute value jM

t

j) ex
eeds a �xed number � 2 R in some pres
ribed time interval, and

bounds on the expe
tation of the supremum of jM

t

j

p

over some interval, for real numbers

p � 1. Here are a few illustrative results.

Theorem 4 Let M

t

be a martingale and let t 2 T . Then for any � > 0,

P

�

sup

0�s�t

M

s

� �

�

� �

�1

EM

+

t

P

�

sup

0�s�t

jM

s

j � �

�

� �

�1

EjM

t

j

Proof. Let � = infft � 0 : M

t

� �g. Sin
e both M

t

and M

t^�

are martingales,

EM

t

= EM

t^�

= E

�

M

�

1

[��t℄

+M

t

1

[�>t℄

	

� E

�

�1

[��t℄

+M

t

1

[�>t℄

	

= �P[� � t℄ + E

�

M

t

1

[�>t℄

	

; so

E[M

t

1

[��t℄

℄ � �P[� � t℄ and hen
e

P

�

sup

0�s�t

M

s

� �

�

= P[� � t℄

� �

�1

E[M

t

1

[��t℄

℄

� �

�1

E[M

+

t

1

[��t℄

℄

� �

�1

E[M

+

t

℄;
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proving the �rst assertion. Sin
e �M

t

is also a martingale, we also have:

P

�

inf

0�s�t

M

s

� ��

�

� �

�1

E[M

�

t

℄; adding these together,

P

�

sup

0�s�t

jM

s

j � �

�

� �

�1

E[jM

t

j℄:

In fa
t we proved something slightly stronger (whi
h we'll need below). Set jM j

�

t

:=

sup

0�s�t

jM

s

j; then

P fjM j

�

t

� �g � �

�1

E

�

jM

t

j1

fjM j

�

t

��g

�

: (11)

Theorem 5 For any martingale M

t

and any real numbers p > 1 and q :=

p

p�1

> 1,







sup

s�t

jM

s

j







p

� q sup

s�t

kM

s

k

p

:

Proof.

By Fubini's theorem,

E

�

(jM j

�

t

)

p

�

=

Z

1

0

p�

p�1

P

�

jM j

�

t

� �

�

d�

�

Z

1

0

p�

p�1

�

�1

E

�

jM

t

j1

fjM j

�

t

��g

�

d�

= E

Z

jM j

�

t

0

p�

p�2

jM

t

j d�

=

p

p� 1

E

h

�

jM j

�

t

�

p�1

jM

t

j

i

:

H�older's inequality asserts that E[Y Z℄ � fEY

p

g

1=p

fEZ

q

g

1=q

for any nonnegative random

variables Y and Z; applying this with Y = jM

t

j and Z = (jM j

�

t

)

p�1

, and noting (p�1)q = p,

we get

fE(jM j

�

t

)

p

g

1

� q E

��

jM j

�

t

)

p

	

1=q

E fjM

t

j

p

g

1=p

fE(jM j

�

t

)

p

g

1�1=q

= k jM j

�

t

k

p

� q kM

t

k

p

= q sup

0�s�t

kM

s

k

p

:

Note that q % 1 as p & 1, so the bound blows up as p shrinks to one. To a
hieve an

L

1

bound on EjM j

�

t

we need something slightly stronger than an L

1

bound on EjM

t

j (see

below).
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In summary: if M

t

is a martingale and if t 2 T then

P[sup

s�t

M

s

� �℄ � �

�1

E[M

+

t

℄

P[min

s�t

M

s

� ��℄ � �

�1

E[M

�

t

℄

P[sup

s�t

jM

s

j � �℄ � �

�1

EjM

t

j

E sup

s�t

jM

s

j

p

� q

p

sup

s�t

E

�

jM

s

j

p

�

= q

p

E

�

jM

t

j

p

�

(p > 1)

E sup

s�t

jM

s

j �

e

e� 1

sup

s�t

E

�

jM

s

j log

+

(jM

s

j)

�

(p = 1)

6 Doob's Martingale

Fix any Y 2 L

1

(
;F ;P) and let M

t

:= E[Y j F

t

℄ be the best predi
tion of Y available at

time t. Then M

t

is a uniformly-integrable martingale, and M

t

! Y a.s. and in L

1

.

7 Summary

To summarize, martingales are important be
ause:

1. They have 
lose 
onne
tions with Markov pro
esses;

2. Their expe
tations at stopping times are easy to 
ompute;

3. They o�er a tool for bounding the maxima and minima of pro
esses;

4. They o�er a tool for establishing path regularity of pro
esses;

5. They o�er a tool for establishing the a.s. 
onvergen
e of 
ertain random sequen
es;

6. They are important for modeling e
onomi
 and statisti
al time series whi
h are, in

some sense, predi
tions.

Examples:

1. Partial sums S

n

= �

n

i=1

X

i

of independent mean-zero RV's

2. Sto
hasti
 Integrals. For example: let M

n

be your \fortune" at time n in a gambling

game, and let X

n

be an IID Bernoulli sequen
e with probability EX

n

= p. Pre
eding

ea
h time n + 1 2 N you may bet any fra
tion F

n

you like of your (
urrent) fortuneM

n

on the up
oming Bernoulli event X

n+1

, at odds (p : 1�p); your new fortune after that

bet will beM

n+1

=M

n

(1�F

n

) if you lose (i.e., ifX

n+1

= 0), andM

n+1

= M

n

(1+F

n

1�p

p

)

if you win (i.e., if X

n+1

= 1), or in general M

n+1

= M

n

(1 � F

n

(1 � X

n+1

=p)). If
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F

n

2 �fX

1

� � �X

n

g depends only on information available at time n, then E[M

n+1

j

F

n

℄ = M

n

and M

n

is a martingale. Hen
e there is no possible betting strategy F

n

based

only on observed information F

n

that 
an lead to a positive expe
ted pro�t, sin
e

E[M

n

�M

0

℄ � 0. We 
an represent M

n

in the form

M

n

=M

0

+

n�1

X

i=0

F

i

M

i

[Y

i+1

� Y

i

℄

as the \martingale transform" of the martingale Y

n

:= (S

n

� np)=p.

3. Varian
e of a Sum: M

n

=

�

P

n

i=1

Y

i

�

2

� n�

2

, where EY

i

Y

j

= �

2

Æ

ij

4. Radon-Nikodym Derivatives:

M

n

(!) = 2

�n

Z

(i+1)=2

n

i=2

n

f(x) dx; i = b2

n

!


!M

1

(!) = f(!) a.s:

5. Leftovers:

� Submartingales: E[X

+

t

℄ <1, X

t

2 F

t

, X

t

� E[X

s

j F

t

℄ for s > t.

� Supermartingales: IfX

t

is a submartingale then Y

t

:= (�X

t

) is a supermartingale,

satisfying Y

t

� E[Y

s

j F

t

℄ for s > t.

� Jensen's inequality: if M

t

is a martingale and if � 
onvex with E[�(M

t

)

+

℄ < 1,

then X

t

= �(M

t

) is a submartingale.

� Most of the bounds and 
onvergen
e theorems above extend to sub- or super-

martingales.

� Positive supermartingales always 
onverge: if Y

t

� 0 is a supermartingale, then

(9Y

1

2 L

1

) Y

t

! Y a.s: If fY

t

g is UI, also Y

t

! Y in L

1

.

� A martingale is both a submartingale and a supermartingale.
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