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Informally a martingale is simply a family of random variables (or a stohasti proess)

fM

t

g de�ned on some probability spae (
;F ;P) and indexed by some ordered set T that

is \onditionally onstant," i.e., whose predited value at any future time s > t is the same

as its present value at the time t of predition. The set T of possible indies t 2 T is usually

taken to be the nonnegative integers N

0

or the nonnegative reals R

+

, although sometimes Z

or R or other ordered sets arise. Formally we represent what is known at time t in the form

of an inreasing family of �-algebras (or a �ltration) fF

t

g � F , possibly generated by some

proess fX

s

: s � tg or even by the martingale itself, F

M

t

= �fM

s

: s � tg (this one is alled

the natural �ltration). We require that EjM

t

j <1 for eah t (so the onditional expetation

below is well-de�ned) and that

M

t

= E[M

s

j F

t

℄; t < s:

It follows that fM

t

g is adapted to fF

t

g, i.e.,M

t

is F

t

-measurable for eah t. For integer-time

proesses, like funtions of random walks or Markov hains, it is only neessary (by the tower

property) to take s = t + 1. Usually we take F

t

= �[X

i

: i � t℄ for some proess of interest

X

t

(perhaps M

t

itself, although in general F

t

an be bigger than that) and write

M

t

= E[M

t+1

j X

0

; :::; X

t

℄:

There are several \big theorems" about martingales that make them useful in statistis and

probability theory. Most of them are simple to prove for disrete time T = N

0

, and true but

more hallenging for ontinuous time T = R

+

, so our text (Resnik, 1998, hap. 10) overs

only integer-time martingales.

1 Optional Stopping Theorem

A random \time" � : 
! T is an F

t

-stopping time or a Markov time if for eah t 2 T the

event [� � t℄ is in F

t

; informally, � \doesn't depend on the future." For disrete time sets

T , � is a stopping time if and only if [� = t℄ 2 F

t

for eah t 2 T (an you prove that?).
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If � is a stopping time and if M

t

is a martingale, then M

t^�

is a martingale too. The proof

is easy for integer-time martingales:

E[M

(t+1)^�

j F

t

℄ = E[M

�

1

[��t℄

+M

t+1

1

[�>t℄

j F

t

℄

=M

�

1

[��t℄

+ 1

[�>t℄

E[M

t+1

j F

t

℄

=M

�

1

[��t℄

+ 1

[�>t℄

M

t

=M

t^�

:

1.1 Appliation: Simple Random Walks

Fix 0 < p < 1 and let f�

j

g be iid �1-valued random variables with P[�

j

= 1℄ = p and

P[�

j

= �1℄ = q := (1� p) (hene E�

j

= p� q and V�

j

= 4pq). Set F

n

:= � f�

j

: j � ng, let

x 2 Z, and set:

X

n

:= x +

X

j�n

�

j

; (1)

a random walk that is either symmetri (if p =

1

2

) or not (if p 6=

1

2

). Set � := (p�q) and

onsider for n 2 N

0

= f0; 1; : : :g the three proesses

M

(1)

n

= X

n

� �n (2a)

M

(2)

n

= (X

n

� �n)

2

� 4pq n (2b)

M

(3)

n

= (q=p)

X

n

(2)

Verify that eah of these is a martingale by omputing E[M

(i)

n+1

j F

n

℄ = M

(i)

n

and ap-

plying the tower property and indution. For integers a � x and b � x, verify that

� := inf

�

t � 0 : X

t

=2 (a; b)

	

is a stopping time, �nite a.s. by Borel-Cantelli.

Gambler's Ruin

Starting with a fortune of $x and repeatedly betting $1 at even odds at a game where the

probabilities of winning and losing are p and q := (1�p), what is the probability of \winning"

by reahing a spei�ed goal b > x before losing by falling to a spei�ed limit a < x?

Let W := [� <1℄ \ [X

�

= b℄ be the event that X

t

exits (a; b) to the right, i.e., that X

t

� b

before X

t

� a. If p =

1

2

= q (the symmetri ase) then � = 0 and by DCT

x = E[M

(1)

0

℄ = lim

t!1

E[M

(1)

t^�

℄

= E[M

(1)

�

℄ = bP[W ℄ + aP[W



℄

= (b� a)P[W ℄ + a;

so the probability of winning is

P[W ℄ =

x� a

b� a

: (3)
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Thus in a \fair" game the odds of reahing b before falling to a, starting at x 2 (a; b),

inreases linearly from zero at a to one at b. For an un-fair game, i.e., if p 6= q, then

(p=q)

b

6= (p=q)

a

and again by DCT,

(q=p)

x

= E[M

(3)

0

℄ = lim

t!1

E[M

(3)

t^�

℄ = E[M

(3)

�

℄

= (q=p)

b

P[W ℄ + (q=p)

a

P[W



℄

=

�

(q=p)

b

� (q=p)

a

�

P[W ℄ + (q=p)

a

; so

P[W ℄ =

(q=p)

x

� (q=p)

a

(q=p)

b

� (q=p)

a

=

(p=q)

b�x

� (p=q)

b�a

1� (p=q)

b�a

(4)

� (p=q)

b�x

if b� a and p <

1

2

< q.

For example, for 1:1 bets in US roulette whih win with probability p = 9=19 and lose with

probability q = 10=19, the hane of winning by reahing b = $100 before falling to a = $0

with one-dollar bets beginning at x = $90 is P[W ℄ = (0:9

10

� 0:9

100

)=(1� 0:9

100

) = 0:34866,

and the hane of reahing $100 before $0 starting at x = $50 is P[W ℄ = (0:9

50

�0:9

100

)=(1�

0:9

100

) = 0:00513, while these would be 90% and 50% in a fair game. It's surprising to most

of us what a dramati di�erene the seemingly small departure of p � 0:474 and q � 0:526

from 0:500 makes.

Martingale M

(2)

t

an help us �nd the expeted duration of a fair game. For p =

1

2

= q, � = 0

and 4pq = 1, so

x

2

= M

(2)

0

= lim

t!1

E[M

(2)

t^�

℄ = E[M

(2)

�

℄

= E[X

�

2

� � ℄

= b

2

P[W ℄ + a

2

P[W



℄� E[� ℄

=

b

2

(x� a) + a

2

(b� x)

b� a

� E[� ℄

= (a+ b)x� ab� E[� ℄ so

E[� ℄ = (a+ b)x� ab� x

2

= (b� x)(x� a): (5)

The expeted time until X

t

= 100 or X

t

= 0 starting at x = 90 is 900 turns and starting

at x = 50 is 2500 turns, or 30 and 83 hours respetively at a typial rate of two turns per
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minute. For unfair games we an �nd E� from M

(1)

�

:

x = M

(1)

0

= lim

t!1

E[M

(1)

t^�

℄ = E[M

(1)

�

℄

= E[X

�

� �� ℄

=

b[(q=p)

x

� (q=p)

a

℄ + a[(q=p)

b

� (q=p)

x

℄

(q=p)

b

� (q=p)

a

� �E[� ℄; so

E� =

(b� x)[(q=p)

x

� (q=p)

a

℄ + (a� x)[(q=p)

b

� (q=p)

x

℄

�[(q=p)

b

� (q=p)

a

℄

=

(b� x)[(p=q)

b�x

� (p=q)

b�a

℄� (x� a)[1� (p=q)

b�x

℄

(p� q)[1� (p=q)

b�a

℄

(6)

or approximately E� � (x � a)=(q � p) for a � b and p < q. For US roulette, E� = 1047:5

for x = 90 (with a slim 35% hane of winning) and E� = 940:258 for x = 50 (with about a

1=200 hane). Larger bets make the game go quiker and improve the hane of winning;

for $10 bets, set a = 0, b = 10 and try x = 5, x = 9 to see the probability of winning inrease

to P[W ℄ = 37% or 87% with E[� ℄ = 24:46 or 10:17, respetively, muh loser to the values

50%, 90% for P[W ℄ and 25, 10 for E� in a fair game. Even faster (and more favorable) is

the optimal strategy of bold play, betting x ^ (b� x) eah time; for x = 50 this amounts to

betting all $50 at one (E[W ℄ = 9=19 = 47:37%, E� = 1) while for x = $90, E[W ℄ = 87:94%.

Upon taking the limit as a ! �1 in Eqns (3, 4) we �nd that P[X

t

� b for any t < 1℄

has probability one if p �

1

2

, but for p <

1

2

the probability is (p=q)

b�x

< 1; thus even an

in�nitely-rih patron has only a 0:9

10

= 34:8678% hane of winning $10 in US roulette with

suessive $1 bets. The expeted time to reah b > x is in�nite for p �

1

2

, but for p >

1

2

the

expeted time is �nite, E[� ℄ = (b� x)=(p� q) <1.

1.1.1 Other Random Walks

More generally we an onstrut a proess X

n

as in (1) for any iid f�

j

g � L

2

and martingales

M

(k)

n

as in (2), with � = E�

j

in (2a), replaing 4pq with �

2

= V�

j

in (2b), and replaing

(q=p) with e

t

�

where t

�

6= 0 is the solution to M(t

�

) = 1 for the MGF M(t) of �

j

(t

�

< 0 if

� > 0, t

�

> 0 if � < 0). Now the probabilities of Eqns (3, 4) and expetations of Eqns (5, 6)

will only be approximate, sine X

�

won't be exatly a or b. Abraham Wald (1945) studied

the disrepany in some detail, motivated by the following important appliation, the key

to modern sequential linial trials.

1.2 The SPRT Sequential Statistial Test

If iid random variables fY

j

g are known to ome from one of two possible distributions, with

densities (w.r.t. any �-�nite referene measure) f

0

and f

1

, the likelihood ratio (against the
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Null) for the �rst n observations is

�

n

:=

Y

j�n

f

1

(Y

j

)

f

0

(Y

j

)

:

In Wald's Sequential Probability Ratio Test (SPRT), one observes data sequentially until

�

n

passes an upper boundary U 2 (1;1) (in whih ase the null hypothesis H

0

: Y

j

iid

�

f

0

(y) dy is rejeted) or a lower boundary L 2 (0; 1) (in whih ase the test fails to re-

jet H

0

). The test has optimality properties (Wald and Wolfowitz, 1948) similar to those

of �xed-sample-size likelihood ratio tests (Neyman and Pearson, 1933). The logarithm

X

n

= log�

n

is a random walk under both f

0

and f

1

, and � := inf fn : �

n

=2 (L; U)g =

inf fn : X

n

=2 (a := logL; b := logU)g is Wald's stopping time, so the results of Setion (1.1.1)

apply. In addition, �

n

itself is a martingale under f

0

, as is �

�1

under f

1

, giving onvenient

tools for bounding the probability of inorret hypothesis-test results or the expeted dura-

tion of a sequential test: the approximate size � = P

0

[�

�

� U ℄, power [1� �℄ = P

1

[�

�

� U ℄

are:

� � (1� L)=(U � L) 1� � � U(1� L)=(U � L)

so any desired size and power an be obtained by setting

L � �=(1� �) U � (1� �)=�

The approximate expeted sample sizes S

0

(under f

0

) and S

1

(under f

1

) an be found by

applying martingale methods to the random walk X

n

:= log�

n

, whose iid steps have means

�

i

(so (X

n

� n�

i

) is a martingale) given by

�

0

= �K(f

0

: f

1

) �

1

= K(f

1

: f

0

);

S

0

�

� logU + (1� �) logL

�

0

S

1

�

(1� �) logU + � logL

�

1

under distribution fY

j

g

iid

� f

i

for i = 0; 1 respetively. Here

K(f : g) :=

Z

log

f(y)

g(y)

f(y) dy

denotes the Kullbak-Leibler divergene from f to g, a measure of the disrepany between

two distributions with pdfs f , g. If f

0

and f

1

are rather similar, then �

0

and �

1

will be small

and the sample sizes S

0

or S

1

needed to attain small size � and large power (1� �) will be

large.

A Bayesian with prior P[H

0

℄ = �

0

would report posterior probability P[H

0

j Data ℄ =

(1+

�

1

�

0

�

�

)

�1

, or about �

0

=(�

0

+�

1

a) if X

�

� a and �

0

=(�

0

+�

1

b) if X

�

� b, lending guidane

about the seletion of a and b. By Doob's maximal inequality, for 0 < �; � < 1 the SPRT

with L = � and U = 1=� will satisfy P[ Rejet H

0

j H

0

℄ � � and P[ Rejet H

0

j H

1

℄ � 1��,

the lassial Frequentist error bounds.
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2 Martingale Path Regularity

IfM

t

is a martingale and a < b are real numbers, denote by �

(t)

[a;b℄

the number of \uprossings"

of the interval [a; b℄ by M

s

prior to time t, i.e., the number of times M

s

passes from below a

to above b at times 0 � s � t. Then:

E

h

�

(t)

[a;b℄

i

�

EjM

t

j+ jaj

b� a

and, in partiular, martingale paths don't osillate in�nitely often| they have left and right

limits at every point. This is also the key lemma for proving the Martingale Convergene

Theorem below. Here's the idea, attributed to both Doob and to Snell:

Set �

0

:= 0 and, for n 2 N , de�ne

�

n

:= infft > �

n�1

: M

t

� ag

�

n

:= infft > �

n

: M

t

� bg;

or in�nity if the indiated event never ours (i.e., we take inff;g = 1). De�ne a proess

Y

t

by

Y

t

:=

X

n2N

[M

t^�

n

�M

t^�

n

℄:

Starting with the �rst time �

1

that M

t

� a, Y

t

aumulates the inrements of M

t

until the

�rst time �

1

that M

t

� b; the proess ontinues if the martingale M

t

� a again falls below a

(at time �

2

), and so forth. All the terms vanish for n large enough that �

n

> t, so there are

at most 1 + �

(t)

[a;b℄

non-zero terms, eah at least [b� a℄ exept possibly the last if �

n

< t < �

n

for some n. Then

Y

t

:=

X

n2N

[M

t^�

n

�M

t^�

n

℄

� (b� a)�

(t)

[a;b℄

+ [M

t

� a℄

EY

t

� (b� a)E�

(t)

[a;b℄

+ E[M

t

� a℄

� (b� a)E�

(t)

[a;b℄

� E(M

t

� a)

�

� (b� a)E�

(t)

[a;b℄

� EjM

t

j � jaj:

By the Optional Stopping Theorem, Y

t

is a martingale and hene EY

t

= EY

0

= 0; it follows

that E�

(t)

[a;b℄

�

�

EjM

t

j+ jaj

�

=(b� a).

The important onlusion is that E�

(t)

[a;b℄

<1, so �

(t)

[a;b℄

is almost-surely �nite| leading to:

Theorem 1 (Martingale Path Regularity) Let M

0

t

be a martingale with index set T =

R

+

. Then with probability one, M

0

t

has limits from the left and from the right at every point

t 2 T , and at eah t is almost-surely equal to the right-ontinuous proess M

t

:= lim

s&t

M

0

s

.

If the �ltration is right-ontinuous, F

t

= \

s>t

F

s

, then M

t

is also a martingale.
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If M

t

is uniformly bounded in L

1

, EjM

t

j �  <1 for all t 2 T , then by Fatou's lemma we

an even take t!1 so E�

(1)

[a;b℄

� [ + jaj℄=(b� a) <1, and the number of times �

(1)

[a;b℄

that

M

t

ever rosses the interval [a; b℄ is almost-surely �nite. This is the key for proving:

3 Martingale Convergene Theorems

Theorem 2 (Martingale Convergene Theorem) Let M

t

be an L

1

-bounded martingale

(so for some  2 R

+

it satis�es EjM

t

j �  for all t 2 T ). Then there exists a random variable

M

1

2 L

1

suh that M

t

!M

1

a.s. as t!1. If fM

t

g is Uniformly Integrable (for example,

if (8t 2 T )EjM

t

j

p

� 

p

for some p > 1 and 

p

> 0), then also M

t

!M

1

in L

1

.

Proof. De�ne M

1

:= lim inf

t!1

M

t

and M

1

:= lim sup

t!1

M

t

. Suppose (for ontradi-

tion) that P[M

1

= M

1

℄ < 1. Then there exist numbers a < b for whih P[M

1

< a < b <

M

1

℄ > 0. But �

(1)

[a;b℄

= 1 on this event, ontraditing E�

(1)

[a;b℄

�

�

 + jaj

�

=(b� a) < 1. The

result about UI martingales now follows by the UI onvergene theorem.

Corollary 1 Let M

t

be a martingale and � a stopping time. Then

EM

0

= EM

�

if either fM

t

g is uniformly integrable, or if E� <1 and jM

s

�M

t

j � js� tj a.s. for some

 <1.

Proof. Obviously M

�

= lim

t!1

M

t^�

a.s; the family fM

t^�

g will be UI under either of the

stated onditions.

Note that some ondition is neessary in the Corollary above. The simple symmetri random

walk S

0

= 0, S

n+1

= S

n

� 1 (with probability 1=2 eah) is a martingale, and the hitting time

� := infft : S

t

= 1g is a stopping time that is almost-surely �nite, but

E[S

�

℄ = 1 6= 0 = E[S

0

℄

so the onlusion of Corollary 1 fails. Note that S

n

is not UI here, and jS

s

� S

t

j � js� tj is

linearly bounded, but E� =1. For another example, let X � Ge(

1

2

) be a geometri random

variable with P[X = x℄ = 2

�x�1

for x 2 N

0

, and setM

t

:= 2

t

1

fX�tg

. ThenM

t

is a martingale

starting at M

0

= 1, � = X + 1 = infft : M

t

= 0g is a stopping time with �nite expetation

E[� ℄ = 2, but

E[M

�

℄ = 0 6= 1 = E[M

0

℄:

Again M

t

is not UI, and this time E� <1 but jM

s

�M

t

j is not bounded linearly in js� tj.

Page 7Page 7Page 7



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L Wolpert

Theorem 3 (Bakwards Martingale Convergene Theorem) Let fM

t

g be a martin-

gale indexed by Z or R (or just the negative half-line Z

�

or R

�

). Then, without any further

onditions, there exists a random variable M

�1

2 L

1

(
;F ;P) suh that

lim

t!�1

M

t

= M

�1

a.s: and in L

1

(
;F ;P):

The strong law of large numbers for i.i.d. L

1

random variables X

n

is a orollary: for n 2 N ,

de�ne S

n

:=

P

n

j=1

X

j

and M

�n

=

�

X

n

= S

n

=n. Verify that M

t

is a martingale for the

�ltration F

t

= �fM

s

: s � tg (note X

n

is F

�n+1

-measurable but not F

�n

-measurable), and

that fM

�1

is in the tail �eld and hene (by Kolmogorov's 0=1 law) is almost-surely onstant.

Evidently the onstant is �, so X

n

! � a.s. as n!1.

4 Martingale Problem for Markov Chains

In Setion (1.1) we found a partiular funtion �(x) = (q=p)

x

whih, when evaluated along the

random walk X

n

, would yield a proess M

(3)

n

= �(X

n

) that was a martingale. In this setion

we onsider the general question of �nding funtions �(�) for whih �(X

t

) is a martingale

for spei�ed Markov hains X

t

| or, more general still, of how to reate martingales from

proesses of the form �(X

t

)� A

t

for \any" funtion �.

A disrete time Markov hain is a proess X

n

indexed by the nonnegative integers n 2 T :=

N

0

and taking values in a disrete state spae S with the property that, for eah n 2 T ,

the onditional probability P[A j F

n

℄ of any \future" event A 2 F

n

:= � fX

t

: t � ng,

given the \past" F

n

:= � fX

t

: t � ng, depends only on the \present" X

n

| i.e., is �(X

n

)-

measurable. Random walks (like the simple random walk of Setion (1.1)) are important

examples of Markov hains, but others abound. The distribution of a Markov Chain is

determined by the initial distribution p

(0)

j

= P[X

0

= j℄ for j 2 S and the transition matrix

P

(t)

jk

= P[X

t+1

= k j X

t

= j℄ for all t 2 T and pairs j; k 2 S. In the important stationary

ase P

(t)

jk

= P

jk

doesn't depend on t, so p

(0)

j

= P[X

t

= j℄ for every t 2 T and n-step transition

probabilities P[X

t+n

= k j X

t

= j℄ = P

n

jk

are given by simple matrix powers.

Let X

n

be a stationary Markov hain with transition matrix P on a disrete (but not ne-

essarily �nite) state spae S. Then for �(X

n

) to be a martingale we need for eah j 2 S

0 = E[�(X

1

)� �(X

0

) j X

0

= j℄

= A�(j) :=

X

k 6=j

P

jk

[�(k)� �(j)℄;

for the operator A alled the generator of the proess. In this ase � is said to be harmoni.

Even if � is not harmoni, we an still onstrut a martingale by subtrating preisely the

right thing:

M

�

(t) := �(X

t

)�

X

0�s<t

A�(X

s

)

Page 8Page 8Page 8



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L Wolpert

will always be a martingale, starting at �(X

0

). In fat, this property haraterizes the

Markov hain X

t

ompletely, and is the modern way of de�ning the Markov proess.

4.1 Martingale Problems

In both disrete and ontinuous time, the most powerful and general way known for on-

struting Markov proesses and exploring their properties is to view them as solutions to

a Martingale Problem. We desribe it for disretely-distributed proesses X

t

, but similar

haraterizations apply to Markov proesses with ontinuous marginal distributions.

4.2 Disrete Time

Let P

(t)

jk

be a (possibly time-dependent) Markov transition matrix on a state spae S indexed

by T = N

0

or T = Z, so (8j; k 2 S) and (8t 2 T ),

P

(t)

jk

� 0 and

X

k2S

P

(t)

jk

= 1:

Then an S-valued proess X

t

indexed by t 2 T is a Markov hain with transition matrix

P

(t)

jk

if and only if it solves the disrete-time Martingale Problem: for all bounded funtions

� : S ! R, the proess

M

�

(t) := �(X

t

)� �(X

0

)�

X

0�s<t

X

j 6=i=X

s

P

(s)

ij

[�(j)� �(i)℄

must be a martingale indexed by t 2 T . In the homogeneous ase where P

(t)

jk

� P

jk

doesn't

depend on t, the n-step transition probability is simply the matrix power P

n

, and the

operator

G�(i) =

X

j 6=i

P

ij

[�(j)� �(i)℄

is alled the generator of the proess. The funtion � is alled harmoni if G� � 0, in whih

ase �(X

t

) itself is a martingale.

4.2.1 Example: Simple Random Walks

For the symmetri random walk on Z, for example, G�(x) =

1

2

[�(x+1)� 2�(x)+ �(x� 1)℄,

half the seond-di�erene operator, so all aÆne funtions �(x) = a+ bx (and only they) are

harmoni. Now we'll onsider asymmetri walks.

Let X

t

be the simple random walk (1) starting at X

0

= x with P[�

j

= 1℄ = p and P[�

j

=

�1℄ = q := (1�p) with 0 < p < 1. To be harmoni a funtion � must satisfy 0 � A�(x) =

p[�(x+1)��(x)℄�q[�(x)��(x�1)℄, so by indution [�(x)��(x�1)℄ = (q=p)

x

[�(1)��(0)℄.

Summing the geometri series shows that all solutions are of the form �(x) = a+ b(q=p)

x

for

p 6= q, and (as before) �(x) = a+ bx for p = q =

1

2

.
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This and the martingale maximal inequality lead to simple proofs of things about the random

walk| for example, if p < q (so X

t

is more likely to derease than inrease) and a > x, then

for t > 0,

P[ sup

0�s�t

X

s

� a℄ = P[ sup

0�s�t

(q=p)

X

s

� (q=p)

a

℄

�

(q=p)

x

(q=p)

a

= (p=q)

a�x

:

Taking the supremum over all t > 0 (sine the bound doesn't depend on t), we see that the

probability of ever exeeding a dereases geometrially. With a little more work, we an �nd

exeedene probabilities for lines a + bt too:

Let b 2 R and set Y

t

:= X

t

� bt where X

t

is the simple random walk of Setion (1.1). Then

Y too is a Markov hain, and the funtion �(x) = r

x

will be harmoni for Y if r satis�es

0 = A�(x) = p�(x+ 1� b)� �(x) + q�(x� 1� b)

= r

x�1�b

[pr

2

� r

1+b

+ q℄:

The term in brakets

h(r) := pr

2

� r

1+b

+ q

vanishes at r = 1 and tends to in�nity as r ! �1. Its derivative at r = 1 is h

0

(1) = (�� b)

for � = (p� q) = (2p� 1); if this doesn't vanish, then there must exist another root r

�

6= 1

of h(r

�

) = 0 for whih A� � 0 and hene M

�

(t) := r

X

t

�bt

�

is a martingale starting at

M

�

(0) = r

x

�

. By the Martingale Maximal Inequality (MMI, Theorem4 on p. 13), for any

a; b 2 R,

P

�

sup

0�s�t

fX

s

� bsg � a

�

= P

�

sup

0�s�t

fr

Y

s

�

g � r

a

�

�

� r

x�a

�

; (7)

giving a bound for the probability that the random walk X

s

ever rosses the line y = a+ bs

(sine the bound doesn't depend on t < 1). In the Roulette example, with p = 9=19 and

b = 0 we have r

�

= q=p = 10=9, so (7) implies

P[X

t

ever exeeds a℄ � (9=10)

a�x

;

the same bound as before. Now, however, we have new results like

P[X

t

ever exeeds (a+ t=2)℄ � (3:382975)

x�a

for a symmetri random walk and a � x, sine r

�

� 3:382975 is the solution r 6= 1 to

h(r) = [

1

2

r

2

� r

3=2

+

1

2

℄ = 0.

4.2.2 General Random Walks

Now let f�

j

g be iid from any distribution with a MGF M(t) = E[e

t�

j

℄ that is �nite in some

interval around zero. Let X

n

:= x +

P

j�n

�

j

be a random walk starting at x 2 R, and let
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a; b 2 R. Then for any t 2 R for whih M(t) is �nite,

Y

n

:= exp ftX

n

� n logM(t)g

is a martingale and, for any t

�

suh that M(t

�

) = e

t

�

b

, so is

Y

�

n

:= exp ft

�

(X

n

� nb)g :

By the MMI,

P [X

n

ever exeeds a+ b n℄ = P

�

sup

n�0

(X

n

� n b) � a

�

= P

�

sup

n�0

Y

�

n

� e

t

�

a

�

� exp ft

�

(x� a)g :

For example, if �

j

iid

� No(�; �

2

) then M(t) = e

t�+t

2

�

2

=2

is �nite for all t 2 R and the equation

M(t

�

) = e

t

�

�+t

2

�

�

2

=2

= e

t

�

b

is satis�ed for t

�

= 0 or t

�

= 2(b � �)=�

2

. The �rst of these gives a trivial bound but the

seond gives

P [X

n

ever exeeds a + b n℄ � exp

�

2(b� �)(x� a)=�

2

	

or, for x = � = 0 < a, simply exp f�2ab=�

2

g. This same bound, as it happens, applies to

Brownian motion with drift. Exerise: Find a bound for the probability that a unit-rate

Poisson random walk X

t

ever exeeds 1 + 2t (Ans: exp(�1:256431) = 0:2846682).

4.3 Continuous Time

Similar bounds are available for Markov proesses indexed by ontinuous time T = R

+

, suh

as Brownian motion and ontinuous-time Markov hains.

Let Q

(t)

jk

be a (possibly time-dependent) ontinuous-time Markov transition rate matrix on

a disrete state spae S, i.e., a family of matries on S � S that for eah t 2 T satis�es

(8j 6= k 2 S) Q

(t)

jk

� 0 and (8j 2 S)

X

k2S

Q

(t)

jk

= 0:

Then an S-valued proess X

t

is a Markov hain with rate matrix Q

(t)

jk

if and only if it solves

the ontinuous-time Martingale Problem: for all bounded funtions � : S ! R, the proess

M

�

(t) := �(X

t

)�

Z

t

0

h

X

j 6=i=X

s

Q

(s)

ij

[�(j)� �(i)℄

i

ds
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must be a martingale starting at M

�

(0) = �(x). In the homogeneous ase where Q

(t)

jk

� Q

jk

doesn't depend on t, the time-t transition probability is simply the matrix exponential P

t

=

exp(t Q) =

P

n�0

t

n

n!

Q

n

. The operator

G�(i) :=

X

j2S

Q

ij

[�(j)� �(i)℄

is alled the (in�nitesimal) generator of the proess, and M

�

an be written

M

�

(t) := �(X

t

)�

Z

t

0

G�(X

s

) ds:

If � is harmoni, then �(X

t

) is a martingale. A similar approah works for proesses with

ontinuous marginal distribution: for Brownian Motion in R

d

, for example, G�(x) =

1

2

��(x),

half the Laplaian, illustrating why funtions that satisfy G� � 0 are alled harmoni.

4.3.1 Example: SII Jump Proesses

The unit-rate Poisson proess N(t) is haraterized by its initial value of 0 and its generator

G�(x) = [�(x + 1)� �(x)℄. The sum

X

t

=

X

j

u

j

N

j

(�

j

t)

of independent Poisson proesses with rates �

j

> 0 and jump sizes u

j

2 R is also a ontinuous

time Markov proess, with generator given by

G�(x) =

X

j

[�(x+ u

j

)� �(x)℄ �

j

=

Z

R

[�(x+ u)� �(x)℄ �(du) (8)

for � 2 C

1

b

(R), for the disrete measure �(du) :=

P

j

u

j

Æ

�

j

(du). The log h.f. is

log Ee

i!X

t

=

Z

R

�

e

i!u

� 1

�

�(du): (9)

Atually Eqns (8, 9) ontinue to be well-de�ned and determine the distribution of a Markov

proess X

t

with stationary independent inrements (SII) for any �nite Borel measure �(du)

on R or, sine both integrands vanish to �rst order at zero, even for in�nite \L�evy measures"

�(du) that satisfy the \loal L

1

ondition"

Z

R

(1 ^ juj) �(du) <1: (10)
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One example is the gamma proess X

t

� Ga(�dt; �) whose L�evy measure is given by �(du) =

�u

�1

e

��u

1

fu>0g

du, and whose independent inrements

[X

t

�X

s

℄ � Ga(�(t� s); �)

have gamma distributions. Another is the symmetri �-stable (S�S) proess X

t

� St(�; 0; t; 0)

with �(du) =

�

�

�(�) sin(

��

2

) juj

���1

du, with �-stable inrements. Eqn (10) is only satis�ed

for 0 < � < 1, but the approah an be extended to over the entire range of 0 < � < 2

(inluding the Cauhy, � = 1) using \ompensation". Ask me if you'd like to know more.

5 Maximal Inequalities

Under mild onditions, the suprema of martingales over �nite and even in�nite intervals

may be bounded; this makes them extremely useful for bounding the growth of proesses.

The usual bounds are of two kinds: bounds on the probability that a martingale M

t

(or its

absolute value jM

t

j) exeeds a �xed number � 2 R in some presribed time interval, and

bounds on the expetation of the supremum of jM

t

j

p

over some interval, for real numbers

p � 1. Here are a few illustrative results.

Theorem 4 Let M

t

be a martingale and let t 2 T . Then for any � > 0,

P

�

sup

0�s�t

M

s

� �

�

� �

�1

EM

+

t

P

�

sup

0�s�t

jM

s

j � �

�

� �

�1

EjM

t

j

Proof. Let � = infft � 0 : M

t

� �g. Sine both M

t

and M

t^�

are martingales,

EM

t

= EM

t^�

= E

�

M

�

1

[��t℄

+M

t

1

[�>t℄

	

� E

�

�1

[��t℄

+M

t

1

[�>t℄

	

= �P[� � t℄ + E

�

M

t

1

[�>t℄

	

; so

E[M

t

1

[��t℄

℄ � �P[� � t℄ and hene

P

�

sup

0�s�t

M

s

� �

�

= P[� � t℄

� �

�1

E[M

t

1

[��t℄

℄

� �

�1

E[M

+

t

1

[��t℄

℄

� �

�1

E[M

+

t

℄;
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proving the �rst assertion. Sine �M

t

is also a martingale, we also have:

P

�

inf

0�s�t

M

s

� ��

�

� �

�1

E[M

�

t

℄; adding these together,

P

�

sup

0�s�t

jM

s

j � �

�

� �

�1

E[jM

t

j℄:

In fat we proved something slightly stronger (whih we'll need below). Set jM j

�

t

:=

sup

0�s�t

jM

s

j; then

P fjM j

�

t

� �g � �

�1

E

�

jM

t

j1

fjM j

�

t

��g

�

: (11)

Theorem 5 For any martingale M

t

and any real numbers p > 1 and q :=

p

p�1

> 1,





sup

s�t

jM

s

j





p

� q sup

s�t

kM

s

k

p

:

Proof.

By Fubini's theorem,

E

�

(jM j

�

t

)

p

�

=

Z

1

0

p�

p�1

P

�

jM j

�

t

� �

�

d�

�

Z

1

0

p�

p�1

�

�1

E

�

jM

t

j1

fjM j

�

t

��g

�

d�

= E

Z

jM j

�

t

0

p�

p�2

jM

t

j d�

=

p

p� 1

E

h

�

jM j

�

t

�

p�1

jM

t

j

i

:

H�older's inequality asserts that E[Y Z℄ � fEY

p

g

1=p

fEZ

q

g

1=q

for any nonnegative random

variables Y and Z; applying this with Y = jM

t

j and Z = (jM j

�

t

)

p�1

, and noting (p�1)q = p,

we get

fE(jM j

�

t

)

p

g

1

� q E

��

jM j

�

t

)

p

	

1=q

E fjM

t

j

p

g

1=p

fE(jM j

�

t

)

p

g

1�1=q

= k jM j

�

t

k

p

� q kM

t

k

p

= q sup

0�s�t

kM

s

k

p

:

Note that q % 1 as p & 1, so the bound blows up as p shrinks to one. To ahieve an

L

1

bound on EjM j

�

t

we need something slightly stronger than an L

1

bound on EjM

t

j (see

below).
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In summary: if M

t

is a martingale and if t 2 T then

P[sup

s�t

M

s

� �℄ � �

�1

E[M

+

t

℄

P[min

s�t

M

s

� ��℄ � �

�1

E[M

�

t

℄

P[sup

s�t

jM

s

j � �℄ � �

�1

EjM

t

j

E sup

s�t

jM

s

j

p

� q

p

sup

s�t

E

�

jM

s

j

p

�

= q

p

E

�

jM

t

j

p

�

(p > 1)

E sup

s�t

jM

s

j �

e

e� 1

sup

s�t

E

�

jM

s

j log

+

(jM

s

j)

�

(p = 1)

6 Doob's Martingale

Fix any Y 2 L

1

(
;F ;P) and let M

t

:= E[Y j F

t

℄ be the best predition of Y available at

time t. Then M

t

is a uniformly-integrable martingale, and M

t

! Y a.s. and in L

1

.

7 Summary

To summarize, martingales are important beause:

1. They have lose onnetions with Markov proesses;

2. Their expetations at stopping times are easy to ompute;

3. They o�er a tool for bounding the maxima and minima of proesses;

4. They o�er a tool for establishing path regularity of proesses;

5. They o�er a tool for establishing the a.s. onvergene of ertain random sequenes;

6. They are important for modeling eonomi and statistial time series whih are, in

some sense, preditions.

Examples:

1. Partial sums S

n

= �

n

i=1

X

i

of independent mean-zero RV's

2. Stohasti Integrals. For example: let M

n

be your \fortune" at time n in a gambling

game, and let X

n

be an IID Bernoulli sequene with probability EX

n

= p. Preeding

eah time n + 1 2 N you may bet any fration F

n

you like of your (urrent) fortuneM

n

on the upoming Bernoulli event X

n+1

, at odds (p : 1�p); your new fortune after that

bet will beM

n+1

=M

n

(1�F

n

) if you lose (i.e., ifX

n+1

= 0), andM

n+1

= M

n

(1+F

n

1�p

p

)

if you win (i.e., if X

n+1

= 1), or in general M

n+1

= M

n

(1 � F

n

(1 � X

n+1

=p)). If
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F

n

2 �fX

1

� � �X

n

g depends only on information available at time n, then E[M

n+1

j

F

n

℄ = M

n

and M

n

is a martingale. Hene there is no possible betting strategy F

n

based

only on observed information F

n

that an lead to a positive expeted pro�t, sine

E[M

n

�M

0

℄ � 0. We an represent M

n

in the form

M

n

=M

0

+

n�1

X

i=0

F

i

M

i

[Y

i+1

� Y

i

℄

as the \martingale transform" of the martingale Y

n

:= (S

n

� np)=p.

3. Variane of a Sum: M

n

=

�

P

n

i=1

Y

i

�

2

� n�

2

, where EY

i

Y

j

= �

2

Æ

ij

4. Radon-Nikodym Derivatives:

M

n

(!) = 2

�n

Z

(i+1)=2

n

i=2

n

f(x) dx; i = b2

n

!

!M

1

(!) = f(!) a.s:

5. Leftovers:

� Submartingales: E[X

+

t

℄ <1, X

t

2 F

t

, X

t

� E[X

s

j F

t

℄ for s > t.

� Supermartingales: IfX

t

is a submartingale then Y

t

:= (�X

t

) is a supermartingale,

satisfying Y

t

� E[Y

s

j F

t

℄ for s > t.

� Jensen's inequality: if M

t

is a martingale and if � onvex with E[�(M

t

)

+

℄ < 1,

then X

t

= �(M

t

) is a submartingale.

� Most of the bounds and onvergene theorems above extend to sub- or super-

martingales.

� Positive supermartingales always onverge: if Y

t

� 0 is a supermartingale, then

(9Y

1

2 L

1

) Y

t

! Y a.s: If fY

t

g is UI, also Y

t

! Y in L

1

.

� A martingale is both a submartingale and a supermartingale.
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