STA 711: Probability & Measure Theory
Robert L. Wolpert

12 Martingale Methods: Application to SPRT

Random Walks and Martingales

Let {¢;} be independent, identically distributed random variables, all with the same mean p = E[¢;],
variance 02 = V[¢;], and moment generating function M(A\) = E[e*i]. Under suitable regularity
conditions the logarithm m(\) := log M (\) has Taylor expansion m(\) = uA+ 02A?/2+ 0(\?) near

zero. Let F, := o{&; : j < n} be the filtration generated by {;}.

For any « € R counsider the sequence X,, = = + Zj<n §; of partial sums, starting at x; X, is a
random walk starting at x. Fix real numbers a < b and define a {F, }-stopping time 7 = 7, by

7:=1inf{n: X, ¢ (a,b)}

and the “right exit probability” by « := P[7 < oo and X, > b]. Our object is to compute « and
E[7], the probability of exiting on the right and the expected exit time, as functions of x € (a,b).

The Symmetric Case

First suppose = 0. Then X, is a martingale, and so (by the optional sampling theorem) is X, r,,
which moreover is bounded and hence uniformly integrable. It follows that

Tr = E[XT/\O]
= lim E[X, ]
n—r00
= E[XT]
~a(l — o)+ b(a); solving, we find

r—a

aN
b—a

(the estimates are exact if P[X; € {a,b}] = 1, but only approximate if there is a chance of
“overshooting” the boundary). Also (X,,)? — no? is a martingale, so
2? = E[(X7n00)? = (T A 0)0?]
E[(X,)? — 707
a*(1 — a) + b*(a) — E[r]o?, so

a? + a(b® — a?) — 22
E[7] = =

=(b—-2z)(z—a)/o’

Q

For example, for the standard symmetric random walk on the integers with & = +1 with probability
1/2 each, then p =0, 02 = 1, and for a < < b, a = P[X,, > b before X,, < a | Xy = 2] = (v —
a)/(b—a) and the exit time 7 := min[n : X,, ¢ (a,b)] has expectation E[7 | Xg = x| = (b—x)(x —a).
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The Asymmetric Case

Now suppose p # 0, that P[§; < 0] > 0 and P[{; > 0] > 0, and that M(¢) is smooth enough for
the logarithm m()\) := log M (\) to have Taylor expansion m(\) = u)\ + 02A2/2 + 0o(A\?) near zero.
Then m(\) — oo as A — £oo while m/(0) = u # 0, so there exists some \* # 0 (approximately
\* & —2pu/0?) for which m(\*) = 0. For any A € R, Y,, := M=\ ig a martingale (well, any A
for which M()\) < o0). In particular, e* X» is a martingale, so again the optional sampling theorem
gives

e)\*:c _ E[e)\*Xr/\n]

= E[eM 7]

~ el —a) + e ),
6)\*x _ 6)\*a

oAb _ oha

a

To find P = P[X; ever exceeds b], take a — —oo to find P~ ¢ A (=% < 1 if \* > 0, or P = 1, if
A* <0.

Since (X, — nu) is also a martingale,

x=E[Xrrn — (T An)u
= E[X; — 74
~ a(l —a) + b(a) — E[7]p,
a—x+alb—a)

E[r] ~ . .

For example, for the standard asymmetric random walk on the integers with ¢ = £1 with probabili-
ties p, ¢ = 1—p, respectively, then u = ¢—p, 0% = 4pq, and M ()\) = pe+qe™ = 1+(pe* —q)(1—e™)
so m(A*) = 0 for \* = logq/p. Thus for a < z < b, « = P[X,, > b before X;, <a | Xy =2z] =
((¢/p)* — (q¢/p)*)/((q/p)® — (¢/p)*) and the exit time 7 := min[n : X,, ¢ (a,b)] has expectation
E[t | Xo=2z]=(a—z+a(b—a))/u. If a =0 (resp., a = 1) this is close to E[7] =~ (x —a)/u (resp.,
E[r] = (b —x)/p), just what you would expect for a heavily biased random walk.

Sequential Probability Ratio Test

Let {Y;} be independent, identically-distributed random variables with absolutely-continuous dis-
tributions and density function f(y), and consider the statistical problem of trying to tell from
observed values yi, ..., y, which of two possible density functions { fo, f1} governs the distribution
of the {Y}}. All of the standard statistical tests of the hypothesis Hy : f = fy against its alternative
H, : f = f; make use of the Likelihood Ratio (against the null)

Ay - filyn) H J1(y;)
fo(yr) -+ folyn) fo(y;)

A, =
Jj<n
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or, equivalently, its logarithm ¢,, = Zj<n log(fi(yj)/fo(y;)). For example, the Bayesian posterior
probability of Hy (starting with prior 7y = P[Hp], m1 = 1 — o = P[H}]) is given by

_ mofo(y1) -~ fo(yn) _ (mo/m)
P Il = ey Folum) T (o)~ Fi(am) — (mofmn) + A
P[Hy | Y1..Y,] w0

so the posterior odds against Hy are the prior odds multiplied by A,, (which in this context is called
the “Bayes factor against H,”), while the Neyman-Pearson Lemma says that the most powerful
(frequentist) test of level « is to reject Hy whenever A, > r, where r is chosen to ensure that the
probability of a “Type-I error” (rejecting a true null hypothesis) is no more than some specified
value Po[A, > r] < «aif Hy: f = fo is true (the subscrlpt zero on Py indicates that this probability
should be computed assuming Hy). The “power” of the test is then Pi[A,, > r], the probability of
rejecting Hy when in fact H; is true, or one minus the probability § = P1[A, < r] of a “Type-II
error”, failing to reject a false null hypothesis.

Ouly a large sample-size n will ensure that both of these error probabilities will be small, but how
large n must be will depend on how different fy and f; are, something that may be difficult to
anticipate. One possibility, initially proposed by Abraham Wald, is to design a sequential test in
data are drawn successively until the evidence becomes compelling either that Hy is false and must
be rejected (large values of A,) or that Hy is true and must not be rejected (small values of A;,).
A simple process is to select numbers 0 < A < 1 < B and continue sampling until either A,, > B,
in which case we stop and reject Hyp, or A, < A, in which case we stop sampling and accept Hy.

But this is exactly equivalent to drawing samples until the random walk ¢, := log A,, which
starts at * = log1 = 0, reaches either a lower boundary a := log A < 0 or an upper boundary
b :=log B > 0, a problem we have just solved. For this random walk and any A € R, under the
hypothesis Hy, the means of {; := log (f1 (Y])/fg(YJ)) and of exp(A¢;) are given by:

mo=Eilgl = [ 10 ?Ezgf(wdy — _K(fo: )
Mp(\) 1= By A@]—/fl D foly)' ™ dy

and under hypothesis H; they are

p = E1§] = / log 282 fily)dy = K(f1: fo)

M) i=E9] = [ AW fol) M dy
so g < 0 < py. The quantity K(f : g) > 0 is the Kullback-Leibler divergence from f to g, a
measure of how different f and ¢ are; for example, the K-L divergence from a standard normal

distribution to the No(u,1) distribution is p?/2. Also Mg(A\* := 1) = 1 = Mj(\* := —1), so the
exit time 7 := min[n > 0: (, ¢ (a,b)] leads to right-exit probability (and Type-I error probability)
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a = Py[l; > b] and to left-exit probability (and Type-1I error probability) § = P[¢; < a] of

el — 0 1—-A4
:P > ~ — = —
@ ol > 0] eb — et B—-A
e ¥—e® AB-1)
= < ~ — =
f=Pillrsa~1 eb—ea B—-A

with expected sample-size

(B—1)logA+(1—A)logB

(B—A)K(fo: f1)
A(B-1)logA+B(1—-A)logB
(B —A)K(f1: fo)

In the symmetric case AB=1,a=3=1/(1+B)=A/(1 + A), and

Eo[T] ~ —

El[T]N

(B-1)logB (B—-1)logB

Folrl = (B+1)K(fo: f1) il = (B+1DE(f1: fo)

Evidently « and 3 may be made as small as desired by taking A~! = B = log 1776‘ sufficiently large,
but doing so will increase the expected sample size to approximately E[7] ~ log é/ K(fo: f1).

Exercise la: Starting with Xy = $80 and betting $1 each turn at even odds, what is the chance
of reaching b = $100 before going broke (i.e., reaching a = $0)? On average, how long will it take
to reach one of these?

Exercise 1b: Same question, but now playing US Roulette with probability p = 9/19 of winning
and ¢ = 10/19 of losing each turn.

Exercise 2: (R. H. Berk, 1966). Suppose that both hypotheses are wrong, and that §; ~ f(x)dx
but f # {fo, f1}. Show that ¢, is again a random walk, now with drift p = K(f : f1) — K(f : fo)
and conclude that, almost surely, A, — 0 as n — oo if K(f : fo) < K(f : f1) and A,, — o0 as
n— oo if K(f: fo) > K(f: fi). What do you think would happen if K(f : fo) = K(f : f1)?

Exercise 3a: Find K(fq: f1) if each f; is No(y;, 0?) (different means, same variance).
Exercise 3b: Find K(fy: f1) if each f; is No(0,0?) (same mean, different variances).
Exercise 3c: Find K(fy : f1) if each f; is Ex()\;), exponentially distributed with rate ;.

Exercise 3d: Find K(fy : f1) if each f; is Bi(N,p;), binomial with the same N but possibly
different probabilities p;.
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