
STA 711: Probability & Measure Theory

Robert L. Wolpert

12 Martingale Methods: Appliation to SPRT

Random Walks and Martingales

Let f�

j

g be independent, identially distributed random variables, all with the same mean � = E[�

j

℄,

variane �

2

= V[�

j

℄, and moment generating funtion M(�) = E[e

��

j

℄. Under suitable regularity

onditions the logarithm m(�) := logM(�) has Taylor expansion m(�) = ��+�

2

�

2

=2+ o(�

2

) near

zero. Let F

n

:= �f�

j

: j � ng be the �ltration generated by f�

j

g.

For any x 2 R onsider the sequene X

n

= x +

P

j�n

�

j

of partial sums, starting at x; X

n

is a

random walk starting at x. Fix real numbers a < b and de�ne a fF

n

g-stopping time � = �

a;b

by

� := inffn : X

n

=2 (a; b)g

and the \right exit probability" by � := P[� < 1 and X

�

� b℄. Our objet is to ompute � and

E[� ℄, the probability of exiting on the right and the expeted exit time, as funtions of x 2 (a; b).

The Symmetri Case

First suppose � = 0. Then X

n

is a martingale, and so (by the optional sampling theorem) is X

�^n

,

whih moreover is bounded and hene uniformly integrable. It follows that

x = E[X

�^0

℄

= lim

n!1

E[X

�^n

℄

= E[X

�

℄

� a(1� �) + b(�); solving, we �nd

� �

x� a

b� a

(the estimates are exat if P[X

�

2 fa; bg℄ = 1, but only approximate if there is a hane of

\overshooting" the boundary). Also (X

n

)

2

� n�

2

is a martingale, so

x

2

= E[(X

�^0

)

2

� (� ^ 0)�

2

℄

= E[(X

�

)

2

� ��

2

℄

� a

2

(1� �) + b

2

(�) � E[� ℄�

2

; so

E[� ℄ �

a

2

+ �(b

2

� a

2

)� x

2

�

2

= (b� x)(x� a)=�

2

:

For example, for the standard symmetri random walk on the integers with � = �1 with probability

1=2 eah, then � = 0, �

2

= 1, and for a < x < b, � = P[X

n

� b before X

n

� a j X

0

= x℄ = (x �

a)=(b�a) and the exit time � := min[n : X

n

=2 (a; b)℄ has expetation E[� j X

0

= x℄ = (b�x)(x�a).
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The Asymmetri Case

Now suppose � 6= 0, that P[�

j

< 0℄ > 0 and P[�

j

> 0℄ > 0, and that M(t) is smooth enough for

the logarithm m(�) := logM(�) to have Taylor expansion m(�) = ��+ �

2

�

2

=2 + o(�

2

) near zero.

Then m(�) ! 1 as � ! �1 while m

0

(0) = � 6= 0, so there exists some �

�

6= 0 (approximately

�

�

� �2�=�

2

) for whih m(�

�

) = 0. For any � 2 R, Y

n

:= e

�X

n

�nm(�)

is a martingale (well, any �

for whihM(�) <1). In partiular, e

�

�

X

n

is a martingale, so again the optional sampling theorem

gives

e

�

�

x

= E[e

�

�

X

�^n

℄

= E[e

�

�

X

�

℄

� e

�

�

a

(1� �) + e

�

�

b

(�);

� �

e

�

�

x

� e

�

�

a

e

�

�

b

� e

�

�

a

To �nd P = P[X

t

ever exeeds b℄, take a! �1 to �nd P � e

��

�

(b�x)

< 1, if �

�

> 0, or P = 1, if

�

�

� 0.

Sine (X

n

� n�) is also a martingale,

x = E[X

�^n

� (� ^ n)�℄

= E[X

�

� ��℄

� a(1 � �) + b(�) � E[� ℄�;

E[� ℄ �

a� x+ �(b� a)

�

:

For example, for the standard asymmetri random walk on the integers with � = �1 with probabili-

ties p, q = 1�p, respetively, then � = q�p, �

2

= 4pq, andM(�) = pe

�

+qe

��

= 1+(pe

�

�q)(1�e

��

)

so m(�

�

) = 0 for �

�

= log q=p. Thus for a < x < b, � = P[X

n

� b before X

n

� a j X

0

= x℄ =

((q=p)

x

� (q=p)

a

)=((q=p)

b

� (q=p)

a

) and the exit time � := min[n : X

n

=2 (a; b)℄ has expetation

E[� j X

0

= x℄ = (a�x+�(b�a))=�. If � � 0 (resp., � � 1) this is lose to E[� ℄ � (x�a)=� (resp.,

E[� ℄ � (b� x)=�), just what you would expet for a heavily biased random walk.

Sequential Probability Ratio Test

Let fY

j

g be independent, identially-distributed random variables with absolutely-ontinuous dis-

tributions and density funtion f(y), and onsider the statistial problem of trying to tell from

observed values y

1

; :::; y

n

whih of two possible density funtions ff

0

; f

1

g governs the distribution

of the fY

j

g. All of the standard statistial tests of the hypothesis H

0

: f = f

0

against its alternative

H

1

: f = f

1

make use of the Likelihood Ratio (against the null)

�

n

:=

f

1

(y

1

) � � � f

1

(y

n

)

f

0

(y

1

) � � � f

0

(y

n

)

=

Y

j�n

f

1

(y

j

)

f

0

(y

j

)
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or, equivalently, its logarithm `

n

=

P

j�n

log(f

1

(y

j

)=f

0

(y

j

)). For example, the Bayesian posterior

probability of H

0

(starting with prior �

0

= P[H

0

℄, �

1

= 1� �

0

= P[H

1

℄) is given by

P[H

0

j Y

1

:::Y

n

℄ =

�

0

f

0

(y

1

) � � � f

0

(y

n

)

�

0

f

0

(y

1

) � � � f

0

(y

n

) + �

1

f

1

(y

1

) � � � f

1

(y

n

)

=

(�

0

=�

1

)

(�

0

=�

1

) + �

n

P[H

1

j Y

1

:::Y

n

℄

P[H

0

j Y

1

:::Y

n

℄

=

�

1

�

0

�

n

;

so the posterior odds against H

0

are the prior odds multiplied by �

n

(whih in this ontext is alled

the \Bayes fator against H

0

"), while the Neyman-Pearson Lemma says that the most powerful

(frequentist) test of level � is to rejet H

0

whenever �

n

� r, where r is hosen to ensure that the

probability of a \Type-I error" (rejeting a true null hypothesis) is no more than some spei�ed

value P

0

[�

n

� r℄ � � if H

0

: f = f

0

is true (the subsript zero on P

0

indiates that this probability

should be omputed assuming H

0

). The \power" of the test is then P

1

[�

n

� r℄, the probability of

rejeting H

0

when in fat H

1

is true, or one minus the probability � = P

1

[�

n

< r℄ of a \Type-II

error", failing to rejet a false null hypothesis.

Only a large sample-size n will ensure that both of these error probabilities will be small, but how

large n must be will depend on how di�erent f

0

and f

1

are, something that may be diÆult to

antiipate. One possibility, initially proposed by Abraham Wald, is to design a sequential test in

data are drawn suessively until the evidene beomes ompelling either that H

0

is false and must

be rejeted (large values of �

n

) or that H

0

is true and must not be rejeted (small values of �

n

).

A simple proess is to selet numbers 0 < A < 1 < B and ontinue sampling until either �

n

� B,

in whih ase we stop and rejet H

0

, or �

n

� A, in whih ase we stop sampling and aept H

0

.

But this is exatly equivalent to drawing samples until the random walk `

n

:= log �

n

, whih

starts at x = log 1 = 0, reahes either a lower boundary a := logA < 0 or an upper boundary

b := logB > 0, a problem we have just solved. For this random walk and any � 2 R, under the

hypothesis H

0

, the means of �

j

:= log

�

f

1

(Y

j

)=f

0

(Y

j

)

�

and of exp(��

j

) are given by:

�

0

:= E

0

[�

j

℄ =

Z

log

f

1

(y)

f

0

(y)

f

0

(y) dy = �K(f

0

: f

1

)

M

0

(�) := E

0

[e

��

j

℄ =

Z

f

1

(y)

�

f

0

(y)

1��

dy

and under hypothesis H

1

they are

�

1

:= E

1

[�

j

℄ =

Z

log

f

1

(y)

f

0

(y)

f

1

(y) dy = K(f

1

: f

0

)

M

1

(�) := E

1

[e

��

j

℄ =

Z

f

1

(y)

1+�

f

0

(y)

��

dy

so �

0

< 0 < �

1

. The quantity K(f : g) � 0 is the Kullbak-Leibler divergene from f to g, a

measure of how di�erent f and g are; for example, the K-L divergene from a standard normal

distribution to the No(�; 1) distribution is �

2

=2. Also M

0

(�

�

:= 1) = 1 = M

1

(�

�

:= �1), so the

exit time � := min[n � 0 : `

n

=2 (a; b)℄ leads to right-exit probability (and Type-I error probability)
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� = P

0

[`

�

� b℄ and to left-exit probability (and Type-II error probability) � = P

1

[`

�

� a℄ of

� = P

0

[`

�

� b℄ �

e

0

� e

a

e

b

� e

a

=

1�A

B �A

� = P

1

[`

�

� a℄ � 1�

e

�0

� e

�a

e

�b

� e

�a

=

A(B � 1)

B �A

with expeted sample-size

E

0

[� ℄ � �

(B � 1) logA+ (1�A) logB

(B �A)K(f

0

: f

1

)

E

1

[� ℄ �

A(B � 1) logA+B(1�A) logB

(B �A)K(f

1

: f

0

)

In the symmetri ase AB = 1, � = � = 1=(1 +B) = A=(1 +A), and

E

0

[� ℄ =

(B � 1) logB

(B + 1)K(f

0

: f

1

)

E

1

[� ℄ =

(B � 1) logB

(B + 1)K(f

1

: f

0

)

:

Evidently � and � may be made as small as desired by taking A

�1

= B = log

1��

�

suÆiently large,

but doing so will inrease the expeted sample size to approximately E[� ℄ � log

1

�

=K(f

0

: f

1

).

Exerise 1a: Starting with X

0

= $80 and betting $1 eah turn at even odds, what is the hane

of reahing b = $100 before going broke (i.e., reahing a = $0)? On average, how long will it take

to reah one of these?

Exerise 1b: Same question, but now playing US Roulette with probability p = 9=19 of winning

and q = 10=19 of losing eah turn.

Exerise 2: (R. H. Berk, 1966). Suppose that both hypotheses are wrong, and that �

j

� f(x) dx

but f 6= ff

0

; f

1

g. Show that `

n

is again a random walk, now with drift � = K(f : f

1

)�K(f : f

0

)

and onlude that, almost surely, �

n

! 0 as n ! 1 if K(f : f

0

) < K(f : f

1

) and �

n

! 1 as

n!1 if K(f : f

0

) > K(f : f

1

). What do you think would happen if K(f : f

0

) = K(f : f

1

)?

Exerise 3a: Find K(f

0

: f

1

) if eah f

i

is No(�

i

; �

2

) (di�erent means, same variane).

Exerise 3b: Find K(f

0

: f

1

) if eah f

i

is No(0; �

2

i

) (same mean, di�erent varianes).

Exerise 3: Find K(f

0

: f

1

) if eah f

i

is Ex(�

i

), exponentially distributed with rate �

i

.

Exerise 3d: Find K(f

0

: f

1

) if eah f

i

is Bi(N; p

i

), binomial with the same N but possibly

di�erent probabilities p

i

.
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