Final Examination

STA 711: Probability & Measure Theory

Saturday, 2017 Dec 16, 7:00 – 10:00 pm

This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, please ask me to clarify it. Unless a problem states otherwise, you must show your work. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to [box] answers I might not find.

For full credit, answers must be given in closed form with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever possible simplify.

Good luck.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>/20</td>
<td>5.</td>
<td>/20</td>
</tr>
<tr>
<td>2.</td>
<td>/20</td>
<td>6.</td>
<td>/20</td>
</tr>
<tr>
<td>3.</td>
<td>/20</td>
<td>7.</td>
<td>/20</td>
</tr>
<tr>
<td>4.</td>
<td>/20</td>
<td>8.</td>
<td>/20</td>
</tr>
<tr>
<td></td>
<td>/80</td>
<td></td>
<td>/80</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>/160</td>
</tr>
</tbody>
</table>

Print Name: ________________________________
Problem 1: Let ξ_1, ξ_2, \ldots be iid random variables with the $\text{Ex}(1/2)$ distribution (hence mean $E[\xi_j] = 2$... see distribution reference sheet, p. 15).

a) (8) Find non-random $a_n \in \mathbb{R}, b_n > 0$ such that $S_n := \sum_{1 \leq j \leq n} \xi_j$ satisfies

$$P[(S_n - a_n)/b_n \leq x] \to F(x)$$

for a non-trivial df F (i.e., one for a distribution not concentrated at a single point). Give $a_n, b_n,$ and $F.$ Justify your answer.
Problem 1 (cont’d): Still \(\{\xi_j\} \overset{iid}{\sim} \text{Ex}(1/2) \).

b) (6) Find non-random \(a_n \in \mathbb{R}, b_n > 0 \) such that \(X_n := \min_{1 \leq j \leq n} \xi_j \) satisfies:
\[
P\left[\frac{(X_n - a_n)}{b_n} \leq x \right] \rightarrow G(x)
\]
for a non-trivial df \(G \). Give \(a_n, b_n, \) and \(G \). Justify your answer.

c) (6) Find non-random \(a_n \in \mathbb{R}, b_n > 0 \) such that \(Y_n := \max_{1 \leq j \leq n} \xi_j \) satisfies
\[
P\left[\frac{(Y_n - a_n)}{b_n} \leq x \right] \rightarrow H(x)
\]
for a non-trivial df \(H \). Give \(a_n, b_n, \) and \(H \). Justify your answer.
Problem 2: Let $\{X_n\}$ and Y be real-valued random variables on (Ω, \mathcal{F}, P) such that $X_n \to Y$ (pr).

a) (10) Set $A_n := \{\omega: |X_n(\omega)| > n\}$. Prove that $P(A_n) \to 0$ as $n \to \infty$.

b) (10) Prove that $\exp(-X_n^2) \to \exp(-Y^2)$ in $L_1(\Omega, \mathcal{F}, P)$.

Fall 2017
Problem 3: For each part below, select “True” or “False” and sketch a short explanation or counter-example to support your answer:

a) (4) T F If \(\{X_j\} \) are \(L_1 \) random variables and \(\sum \|X_j\|_1 < \infty \) then \(S_n := \sum_{1 \leq j \leq n} X_j \) converges in \(L_1 \) to a limit \(S \in L_1(\Omega, \mathcal{F}, \mathbb{P}) \).

b) (4) T F If \(\{X_n\} \), \(Y \) are \(L_2 \) random variables with \(\|X_n\|_2 \leq 10 \) and if \(X_n \to Y \) in \(L_1 \) then \(\mathbb{P}[X_n \to Y] = 1 \).

c) (4) T F If \(\{X_n\} \), \(Y \) are \(L_1 \) random variables with \(X_1 \leq 42 \) a.s. and if \(X_n \downarrow Y \) decreases to \(Y \) a.s., then \(X_n \to Y \) in \(L_1 \).

d) (4) T F If \(\{X_j\} \) are independent \(L_1 \) random variables with zero mean \(\mathbb{E}[X_j] = 0 \) then \(Y_n := 1 + \sum_{1 \leq j \leq n} j^2 X_j \) is a martingale.

e) (4) T F If \(X \in L_p \) for every \(0 < p < \infty \) then also \(X \in L_\infty \), because \(\|X\|_p \to \|X\|_\infty \) as \(p \to \infty \).
Problem 4: Let $\Omega = \mathbb{N} = \{1, 2, \ldots\}$ be the natural numbers, with probability measure
\[P(A) := \frac{6}{\pi^2} \sum_{\omega \in A} \frac{1}{\omega^2} \]
on the power set $A \in \mathcal{F} := 2^\Omega$. Note $P(\Omega) = 1$ because $\sum_{\omega=1}^\infty \frac{1}{\omega^2} = \pi^2/6$.

a) (4) Let $E := \{2j : j \in \mathbb{N}\}$ be the even numbers, $D := \{2^j : j \in \mathbb{N}\}$ the integer powers of two that are ≥ 2, and $S := \{j^2 : j \in \mathbb{N}\}$ the squares. How many events are in each of the following classes? (Events $A \subseteq \Omega$, not elements $\omega \in A$)

\[\sigma(E, S) : \quad \sigma(D, E) : \quad \pi(D, E) : \quad \sigma(D, E, S) : \]

b) (8) Find the indicated probabilities:

\[P(E) = \quad P(D) = \]
Problem 4 (cont’d): Still $\Omega = \mathbb{N}$ and $P(A) := \frac{6}{\pi^2} \sum_{\omega \in A} \frac{1}{\omega^2}$.

c) (8) Set $X(\omega) = 1_{\{\omega \leq 3\}}$. Find:

$$E(X \mid \sigma(E)) =$$
Problem 5: Let $X_j \sim \text{Po}(1)$ be independent random variables, all with the unit-mean Poisson distribution.

a) (8) Find the logarithm of the ch.f. of X_j, $\phi(\omega) := \mathbb{E}[e^{i\omega X_j}]$:
$\psi(\omega) = \log \phi(\omega) =$

b) (6) For numbers $a > 0$, find the log ch.f. $\psi_1(\omega)$ of $(X_j - 1)/a$.
$\psi_1(\omega) =$

c) (6) Let $S_n = X_1 + \cdots + X_n$ be the partial sum. Find a sequence $a_n > 0$ such that the log characteristic function $\psi_n(\omega)$ of $(S_n - n)/a_n$ converges to $-\omega^2/2$ for every ω, and explain what this says about the limiting probability distribution of S_n (i.e., about the Po(n) distribution for large n).\footnote{Recall the Taylor series $e^x = 1 + x + x^2/2 + o(x^2) \approx 1 + x + x^2/2$ near $x \approx 0$.}
Problem 6:Miscellaneous examples & counter-examples. Let \(\{X_n\} \), \(X \), and \(Y \) be real-valued RVs on a space \((\Omega, \mathcal{F}, P)\), and let \(\mu(dx) \) and \(\nu(dy) \) be the probability distribution measures of \(X \) and \(Y \), respectively.

a) (5) Suppose \(X \) and \(Y \) are independent, and \(g : \mathbb{R}^2 \to \mathbb{R} \) is a Borel function. Sometimes it’s okay to switch orders of integration to evaluate the expectation \(\mathbb{E}[g(X, Y)] = \iint g(x, y) (\mu \otimes \nu)(dx \, dy) \) as either of:

\[
\int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} g(x, y) \mu(dx) \right\} \nu(dy) \quad \text{or} \quad \int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} g(x, y) \nu(dy) \right\} \mu(dx)
\]

and sometimes it’s not. What are the two different sets of broadly-applicable conditions on \(g, \mu, \nu \) given by Fubini’s Theorem, either of which will ensure equality of these two expressions?

1.

2.

b) (5) Even if \(\{X_n\} \) and \(X \) are in \(L_1 \), and \(X_n \to X \) in probability, it’s possible that \(\mathbb{E}X_n \) does not converge to \(\mathbb{E}X \) and that \(\mathbb{E}|X_n - X| \) does not converge to zero. Give an example of \(\{X_n\} \) and \(X \) in \(L_1 \) where \(X_n \to X \) (pr.) but \(L_1 \) convergence fails.
Problem 6 (cont’d): More miscellaneous examples & counter-examples.

c) (5) Give an example of an RV X on $(\Omega, \mathcal{F}, \mathbb{P})$ with $\Omega = (0, 1]$, $\mathcal{F} = \mathcal{B}(\Omega)$, and Lebesgue \mathbb{P} that is in L_1 but not in L_2.

$d(\omega) =$

d) (5) Give an example of a Martingale (X_n, \mathcal{F}_n) with filtration $\mathcal{F}_n = \sigma\{X_j : 0 \leq j \leq n\}$ and a (finite) stopping time τ for which $\mathbb{E}[X_0] \neq \mathbb{E}[X_\tau]$.
Problem 7: More miscellany.

a) (10) The standard Cauchy distribution $\text{Ca}(0, 1)$ has pdf

$$f(x) = \frac{1/\pi}{1 + x^2}, \quad x \in \mathbb{R}$$

and famously has no mean, with $E[|X|] = \infty$ for $X \sim \text{Ca}(0, 1)$. For any $0 \leq p < 1$, however, $\|X\|^p = E[|X|^p] < \infty$. Find and prove\(^2\) a (numerical) finite upper bound

$$E[|X|^{1/2}] \leq \phantom{\text{_________________}}$$

\(^2\) Suggestion: First use symmetry to focus on \mathbb{R}_+; then worry separately about $[0, 1]$ and $(1, \infty)$.

Fall 2017

Sat Dec 16: 7 → 10pm
Problem 7 (cont’d): Yet more miscellany. Will it never end?

b) (5) Let \(X, Y\) be RVs on \((\Omega, \mathcal{F}, \mathbb{P})\), with \(X \in L_4\) and \(Y \in L_p\). For which \(p > 0\) is \(XY \in L_1\)? Why?

c) (5) If sequences \(\{X_n\}\) and \(\{Y_n\}\) of RVs on \((\Omega, \mathcal{F}, \mathbb{P})\) satisfy
\[
\mathbb{P}[X_n > Y_n] \leq 2^{-n}
\]
for each \(n \in \mathbb{N}\), does it follow that \(\limsup X_n \leq \liminf Y_n\) almost surely? Give a proof or counter-example.
Problem 8: Circle True or False; no explanations are needed.

a) T F If $X_n \to X$ (pr.) then $\limsup_{n \to \infty} X_n = X$.

b) T F If X on (Ω, \mathcal{F}, P) has a cont. dist'n then Ω is uncountable.

c) T F If $g(\cdot)$ is a bounded Borel function on \mathbb{R} and $X_n \to X$ (pr.) then $g(X_n) \to g(X)$ (pr.).

d) T F If $0 < X < \infty$ and $E[1/X] = 1/E[X]$ then $X \in L_\infty$.

e) T F If $X \perp Y$ and $P[X < Y] = P[X > Y] = 1/2$ then X, Y have the same distribution.

f) T F If $X \perp Z$ and $Y \perp Z$ then $(X + Y) \perp Z$.

g) T F If $X \perp Z$ and $Y = e^X$ then $Y \perp Z$.

h) T F If probability measures P, Q agree on a λ-system \mathcal{L} then they agree on the π-system $\mathcal{P} = \pi(\mathcal{L})$ it generates.

i) T F If $X^* := \limsup_{n \to \infty} X_n$ is a non-constant random variable, then $\{X_n\}$ cannot be independent.

j) T F If X has a discrete dist’n and Y has a continuous one, then $(X + Y)$ must have a continuous distribution (even if X, Y are not independent).
Blank Worksheet
Another Blank Worksheet
<table>
<thead>
<tr>
<th>Name</th>
<th>Notation</th>
<th>pdf/pmf</th>
<th>Range</th>
<th>Mean μ</th>
<th>Variance σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>$\text{Be}(\alpha, \beta)$</td>
<td>$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$</td>
<td>$x \in (0, 1)$</td>
<td>$\frac{\alpha}{\alpha+\beta}$</td>
<td>$\frac{\alpha^3}{(\alpha+\beta)^2(\alpha+\beta+1)}$</td>
</tr>
<tr>
<td>Binomial</td>
<td>$\text{Bi}(n, p)$</td>
<td>$f(x) = \binom{n}{x} p^x q^{n-x}$</td>
<td>$x \in 0, \ldots, n$</td>
<td>np</td>
<td>npq</td>
</tr>
<tr>
<td>Exponential</td>
<td>$\text{Ex}(\lambda)$</td>
<td>$f(x) = \lambda e^{-\lambda x}$</td>
<td>$x \in \mathbb{R}_+$</td>
<td>$1/\lambda$</td>
<td>$1/\lambda^2$</td>
</tr>
<tr>
<td>Gamma</td>
<td>$\text{Ga}(\alpha, \lambda)$</td>
<td>$f(x) = \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$</td>
<td>$x \in \mathbb{R}_+$</td>
<td>$\frac{\alpha}{\lambda}$</td>
<td>α/λ^2</td>
</tr>
<tr>
<td>Geometric</td>
<td>$\text{Ge}(p)$</td>
<td>$f(x) = p q^{x}$</td>
<td>$x \in \mathbb{Z}_+$</td>
<td>q/p</td>
<td>q/p^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f(y) = p q^{y-1}$</td>
<td>$y \in {1, \ldots}$</td>
<td>$1/p$</td>
<td>q/p^2</td>
</tr>
<tr>
<td>HyperGeo.</td>
<td>$\text{HG}(n, A, B)$</td>
<td>$f(x) = \binom{n}{x} \left(\frac{A}{A+B}\right)^x \left(\frac{B}{A+B}\right)^{n-x}$</td>
<td>$x \in 0, \ldots, n$</td>
<td>nP</td>
<td>$nP(1-P)\frac{(n-x)(A+B)}{n}$</td>
</tr>
<tr>
<td>Logistic</td>
<td>$\text{Lo}(\mu, \beta)$</td>
<td>$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta \sqrt{2\pi \sigma^2}}$</td>
<td>$x \in \mathbb{R}$</td>
<td>μ</td>
<td>$\pi^2 \beta^2/3$</td>
</tr>
<tr>
<td>Log Normal</td>
<td>$\text{LN}(\mu, \sigma^2)$</td>
<td>$f(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-[\log(x-\mu)]^2/2\sigma^2}$</td>
<td>$x \in \mathbb{R}_+$</td>
<td>$e^{\mu+\sigma^2/2}$</td>
<td>$e^{2\mu+\sigma^2}(e^{-\sigma^2}-1)$</td>
</tr>
<tr>
<td>Neg. Binom.</td>
<td>$\text{NB}(\alpha, p)$</td>
<td>$f(x) = \binom{\alpha-1}{x} p^\alpha q^{\alpha-x} \cdot q^{-1} \frac{1}{\Gamma(\alpha)}$</td>
<td>$x \in \mathbb{Z}_+$</td>
<td>$\alpha q/p$</td>
<td>$\alpha q/p^2$</td>
</tr>
<tr>
<td>Normal</td>
<td>$\text{No}(\mu, \sigma^2)$</td>
<td>$f(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$</td>
<td>$x \in \mathbb{R}$</td>
<td>μ</td>
<td>σ^2</td>
</tr>
<tr>
<td>Pareto</td>
<td>$\text{Pa}(\alpha, \epsilon)$</td>
<td>$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha-1}$</td>
<td>$x \in \mathbb{R}_+$</td>
<td>$\frac{\epsilon}{\alpha-1}$</td>
<td>$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f(y) = \alpha y^{\alpha-1} g^{\alpha+1}$</td>
<td>$y \in (\epsilon, \infty)$</td>
<td>$\frac{\epsilon \alpha}{\alpha-1}$</td>
<td>$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$</td>
</tr>
<tr>
<td>Poisson</td>
<td>$\text{Po}(\lambda)$</td>
<td>$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}$</td>
<td>$x \in \mathbb{Z}_+$</td>
<td>λ</td>
<td>λ</td>
</tr>
<tr>
<td>Snedecor F</td>
<td>$\text{F}(\nu_1, \nu_2)$</td>
<td>$f(x) = \frac{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1+\nu_2}{2}\right)} \cdot \frac{1}{\nu_2^2} x^\frac{\nu_2}{2} \left(1 + \frac{\nu_2}{\nu_1} x\right)^{-\frac{\nu_1+\nu_2}{2}}$</td>
<td>$x \in \mathbb{R}_+$</td>
<td>$\frac{\nu_2}{\nu_2-2}$</td>
<td>$\left(\frac{\nu_2}{\nu_2-2}\right)^2 \frac{2(\nu_1+\nu_2-2)}{\nu_1(\nu_1-2)}$</td>
</tr>
<tr>
<td>Student t</td>
<td>$t(\nu)$</td>
<td>$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\pi \nu}} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu}{2}}$</td>
<td>$x \in \mathbb{R}$</td>
<td>0^*</td>
<td>$\nu/(\nu-2)^*$</td>
</tr>
<tr>
<td>Uniform</td>
<td>$\text{Un}(a, b)$</td>
<td>$f(x) = \frac{1}{b-a}$</td>
<td>$x \in (a, b)$</td>
<td>$\frac{a+b}{2}$</td>
<td>$\frac{(b-a)^2}{12}$</td>
</tr>
<tr>
<td>Weibull</td>
<td>$\text{We}(\alpha, \beta)$</td>
<td>$f(x) = \alpha \beta x^{\alpha-1} e^{-\beta x^\alpha}$</td>
<td>$x \in \mathbb{R}_+$</td>
<td>$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$</td>
<td>$\frac{\Gamma(1+2/\alpha)}{\beta^{2/\alpha}} \frac{1}{\beta^{1/\alpha}}$</td>
</tr>
</tbody>
</table>