
STA 711: Probability & Measure Theory
Robert L. Wolpert

2 Construction & Extension of Measures

For any finite set Ω = {ω1, ..., ωn}, the “power set” P(Ω) is the collection of all subsets of
Ω, including the empty-set ∅ and Ω itself. It has |P| = 2n elements; it can also be identified
with the set of all possible functions a : Ω→ {0, 1} by the relation A = {ω : a(ω) = 1}. Set
theorists denote the power set by P(Ω) = {0, 1}Ω or more simply by 2Ω, even for infinite
sets Ω. The function a := 1A equal to one if a ∈ A and otherwise zero is the “indicator”
function of A.

Recall that a probability measure on some σ-algebra F on a set Ω is a function P : F → R

with the three properties:

P1 : (∀A ∈ F) P(A) ≥ 0
P2 : P(Ω) = 1
P3 : (∀Aj ∈ F , i 6= j ⇒ Ai ∩ Aj = ∅), P(∪Aj) =

∑

P(Aj)

We will want to assign probabilities to as many subsets of Ω as possible (so we can find
probabilities of a wide range of events) while actually specifying probabilities on as small a
class of sets as possible (to minimize how much work we do). For a finite probability space
Ω with n ∈ N elements, for example, we will see below that we need specify only the n
probabilities {P[{ω}] : ω ∈ Ω} of the singletons (one-element sets {ω}) to determine P(A)
uniquely for all 2n elements A ∈ 2Ω. Since n≪ 2n for big n, this is a bargain.

Let’s consider a number of properties that classes of sets A ⊂ 2Ω might have. A class A
of subsets of Ω is called a:

FIELD if F1 : Ω ∈ A
F2 : E ∈ A ⇒ Ec ∈ A
F3 : E1, E2 ∈ A ⇒ E1 ∪ E2 ∈ A.

σ-FIELD if σ1 : Ω ∈ A
σ2 : E ∈ A ⇒ Ec ∈ A
σ3 : {Ei} ⊂ A ⇒ ∪ Ei ∈ A.

π-SYSTEM if π1 : E1, E2 ∈ A ⇒ E1 ∩ E2 ∈ A.
λ-SYSTEM if λ1 : Ω ∈ A

λ2 : E ∈ A ⇒ Ec ∈ A
λ3 : {Ei} ⊂ A, Ei ∩ Ej = ∅ ⇒ ∪ Ei ∈ A.

Note that if Aα is a (F, σF, πS, resp. λS) for each α in any index set (even an uncountable
one), then ∩αAα is also a (F, σF, πS, resp. λS) (Exercise: show that this is not true for even
finite unions). Since also 2Ω is a (F, σF, πS, resp. λS), it follows that for any collection A0 ⊂
2Ω there exists a smallest (F, σF, πS, resp. λS) that contains A0: namely, the intersection
of all (F, σF, πS, resp. λS)s containing A0. We denote the smallest (F, σF, πS, resp. λS)
containing A0 by F(A0), σ(A0), π(A0), and λ(A0), respectively.
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For example, if Ω is arbitrary and A0 = { {ω} : ω ∈ Ω}, all singletons, then F(A0) =
σ(A0) = 2Ω if Ω is finite. If Ω is infinite, however, then F(A0) is the collection of finite and
co-finite sets; σ(A0) and λ(A0) are both the collection of countable and co-countable sets;
and π(A0) is just {A0 ∪ {∅}}.

For probability and measure theory we would like for probabilities P(A) to be defined on
all the sets A ⊂ Ω that we encounter. For finite or countable Ω we can usually define P(A)
sensibly for all subsets A, but for uncountable Ω this typically isn’t possible (see free on-line
Appendices B or C of Frank Burk’s text Lebesgue Measure and Integration: An Introduction

for a nice account). If we can’t define P(A) on all of 2Ω, we still need probabilities to be
defined for all sets in a sigma field F , so we can compute probabilities for countable unions
and intersections. We’d like the luxury of having to specify measures on a much smaller
collection, like a field F0 or a collection of sets C that generates a field F0 := F(C). That’s
our goal for the next week or so.

To do this we need to know that we can always extend a probability assignment µ0 defined
on a field F0 to exactly one measure µ on the sigma field F = σ(F0)— i.e., that (a) there
exists at least one such extension, and that (b) any two must agree on all of F .

It turns out to be easier to show that µ0 extends uniquely to the λ-system λ(A0) than
it is to show unique extension to the sigma field σ(A0); luckily, when A0 is a field (or even
just a π-system), these are the same. This will follow from:

2.1 Dynkin’s Theorem

Theorem 1 (Dynkin’s π-λ) Let P be a π-system; then λ(P) = σ(P).

Proof. The proof is in two parts. First we show that λ(P) is not only a λ-system, it’s
also a π-system; then, we show that any collection L ⊂ 2Ω that is both a λ-system and a
π-system is also a σ-algebra. Thus σ(P) ⊆ λ(P) ⊆ σ(P), proving the theorem.

I. L := λ(P) is a π-system

We must show that L is closed under intersections, i.e., that A ∩ B ∈ L whenever
A,B ∈ L. Fix any A ∈ P and set

A := {B ∈ L : A ∩B ∈ L} .

As a step on the way, let’s show that: A is a λ-system containing P.

There are three things to show for all B, {Bi} ⊂ A:

λ1 : Ω ∈ A : A ∩ Ω = A ∈ P ⊂ L.
λ2 : B ∈ A ⇒ Bc ∈ A : A∩Bc = A∩ (A∩B)c = [Ac ∪ (A∩B)]c ∈ L by λ2, λ3.
λ3 : Bi ∩ Bj = ∅ ⇒ ∪Bi ∈ A : A ∩ (∪Bi) = ∪(A ∩ Bi) ∈ A by λ3.

Also P ⊂ A by π1, so A is a λ-system containing P and hence containing L = λ(P).
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We have just shown that A ∩ B ∈ L for every A ∈ P and B ∈ L. So, for every B ∈ L,
the class

B = {A ∈ L : A ∩B ∈ L}

contains each A ∈ P. Also Ω ∈ B (by λ1) and B is closed under complements (as before:
Ac ∩ B = (A ∩ B)c ∩ B = [(A ∩ B) ∪ Bc]c ∈ L) and disjoint unions ((A ∪ A′) ∩ B =
(A ∩ B) ∪ (A′ ∩ B)), so B is a λ-system containing P and hence containing L := λ(P).

This completes the proof that A ∩B ∈ L for every A,B ∈ L, i.e., that L is a π-system.

II. If L is a π-system and a λ-system, then L is a σ-algebra.

Since any λ-system satisfies conditions σ1 = λ1 and σ2 = λ2, it remains only to show σ3.
Let {Ai} ⊂ L, and for n ∈ N let Bn be “what’s new in An,” i.e., define

Bn := An ∩
(

⋃

i<n

Ai

)c

= An ∩
(

⋃

i<n

Bi

)c

= An ∩
⋂

i<n

Bc
i . (1)

The {Bn} are disjoint (since each Bn is in Bc
i for each i < n) and, since ∪i≤nAi = ∪i≤nBi

for every n ∈ N, the {Bn} have the same union as {An}. Thus
⋃

i

Ai =
⋃

n

Bn ∈ L

by λ3, and L is a σ-algebra. This completes the proof of Dynkin’s π−λ theorem.

How can this help us to extend uniquely a probability assignment or “pre-measure” (defined
in Section (2.3)) µ0 from a π-system P (for example, a field) to the σ-field F = σ(P) it
generates? First, note that λ-systems are just perfect for uniqueness:

Proposition 1 Let P and Q be two probability measures on a space (Ω,F). The class

L = {A ∈ F : P (A) = Q(A)}

is a λ-system.

Can you prove that? By Dynkin’s π−λ theorem, there is at most one extension of a “pre-
measure” P0 from any π-system P to the σ-algebra σ(P) = λ(P) it generates, because if
P and Q were two different ones, the collection of events on which they agree would be a
λ-system containing P and hence containing λ(P) = σ(P). Let’s look at examples:

1. P :=
{

{a}
}

on Ω = {a, b, c}. To illustrate that uniqueness of extensions can fail, con-
sider a probability assignment µ on the π-system P that assigns probability µ({a}) =
1/2. For any number 0 ≤ p ≤ 1

2
there exists a distinct extension µp of µ to the σ-

algebra F = 2Ω that assigns probabilities µp({b}) = p, µp({c}) = (1
2
− p). For p 6= q,

the collection of events L for which µp(L) = µq(L) is L = {∅, {a}, {b, c},Ω}, a λ-system
(and σ-algebra) strictly smaller than F .
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2. P := { {ω} : ω ∈ Ω } ∪ {∅}: Given any finite or countable set Ω = {ωi} and positive
numbers {pi ≥ 0} with unit sum

∑

i pi = 1, define µ0 on P by setting µ0({ωi}) = pi
and µ0(∅) = 0. Then by countable additivity the only possible probability measure on
2Ω that extends µ0 is µ(A) :=

∑

[pi : ωi ∈ A]. Every probability measure on 2Ω for
any finite or countable set Ω is of this form.

3. P := { (−∞, b], b ∈ Q } on Ω = (−∞,∞). The field generated by P consists of finite
disjoint unions of left-open rational intervals (a, b], including semi-infinite intervals of
the form (−∞, b] and (a,∞), and Ω = (−∞,∞). The sigma field σ(A) is not just
countable unions of such sets; it is the “Borel” σ-algebra B(R) generated by the open
sets in the real line and includes all open and closed sets, the Cantor set, and many
others. It can be constructed explicitly by transfinite induction (!), see Section (4), and
hence includes only c := #(R) elements (while the power set 2R contains 2c > c), but
it is not easily described. It is not every possible subset of R, but it includes every set
of real numbers we’ll need in this course.

A “Distribution Function” (or “DF”) is a right-continuous non-decreasing function on
R with limits limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1 at ±∞. For any DF F (x),
we can define a pre-pm µ0 on P by setting µ0((−∞, b]) := F (b). If F = Fd is purely
discontinuous this just assigns probability pi = F (xi)− F (xi−) to each xi where F (x)
jumps; if F (x) = Fac =

∫ x

−∞
f(t) dt is absolutely continuous this just assigns probability

µ(A) =
∫

A
f(t) dt to A (and in fact this is the usual definition of that integral!)

2.2 Extension 1: π-System to Field

In this section we show that any finitely-additive pre-measure defined on a π-system P can
be extended uniquely to the field F(P) it generates. Our text instead begins with a pre-
measure P0 defined on a “semi-algebra” (a π-system S such that if A ∈ S then Ac is a finite
disjoint union of elements of S), but that isn’t necessary— here we show that any π-system
will do, since P0 on a π-system P can always be extended uniquely to the field F(P) it
generates. I think this simplifies the argument and the result.

Let µ0 be a pre-pm defined on a π-system P, and let F0 := F(P) be the field generated
by P. For example, if we have an assignment of µ0 to all sets in

P = {(0, b] : 0 ≤ b ≤ 1}

in the unit interval Ω = (0, 1], say, µ0

(

(0, b]
)

:= F (b) for some increasing function F : Ω →
R+. Then by additivity we must have

µ0

(

(a, b]
)

= µ0

(

(0, b]
)

− µ0

(

(0, a]
)

= F (b)− F (a)

for 0 ≤ a ≤ b ≤ 1, and, for the disjoint union of such intervals,

µ0

(

J
⋃

j=1

(aj, bj ]
)

=

J
∑

j=1

[

F (bj)− F (aj)
]
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for 0 ≤ a1 ≤ b1 ≤ a2 ≤ · · · ≤ bJ ≤ 1. But the field F0 := F(P) consists precisely of sets of
that form, finite disjoint unions of left-open intervals, so µ0 has a unique extension to F0.
Similarly, any pre-pm µ0 defined only on rectangles (0, b]× (0, d] in the unit square with the
origin as the south-west corner (given perhaps by a function F (b, d) = µ0

(

(0, b]× (0, d]
)

on
Ω := (0, 1]2) has a unique extension to the disjoint union of all rectangles (a, b]× (c, d] ∈ Ω;
can you find an explicit expression for µ0

(

(a, b]× (c, d]
)

? Hint: First find µ0

(

(a, b]× (0, d]
)

.

In a week-2 homework exercise you will show that for any collection of sets C ⊂ 2Ω the
field F0 := F(C) consists precisely of sets of the form

F0 =
{

B : B = ∪mi=1Bi, Bi = ∩
ni

j=1Aij for some m ∈ N, {ni} ⊂ N
}

with each Aij ∈ C or A
c
ij ∈ C, and with the m sets {Bi} disjoint. By induction on the number

of Aij with Ac
ij ∈ C and finite additivity, you can show that µ0 is well defined on each Bi; by

finite additivity again, it is a well-defined pre-pm on all of F0. In more detail:

If C is a π-system P, then each set Bi above can be written in the form

Bi = ∩1≤j≤ni
Aij (2)

with Ai1 ∈ P and Ac
ij ∈ P for each j > 1. Obviously µ0(Bi) is well-defined if ni = 1, since

then Bi = Ai1 ∈ P. Suppose by induction that µ0 has a unique extension to each set of this
form for each ni < n for n > 1, and let Bi = ∩1≤j≤nAij . Then

µ0(Bi) = µ0

{

Ai1 ∩ Ain ∩
⋂

1<j<n

Aij

}

= µ0

{

Ai1 ∩
⋂

1<j<n

Aij

}

− µ0

{

Ai1 ∩ Ac
in ∩

⋂

1<j<n

Aij

}

= µ0

{

Ai1 ∩
⋂

1<j<n

Aij

}

− µ0

{

(Ai1 ∩ Ac
in) ∩

⋂

1<j<n

Aij

}

,

with each term well-defined by induction, so µ0 extends uniquely to F0. To go further we
must insist that µ0(Bi) ≥ 0 for each Bi of form (2), and hence µ0(B) ≥ 0 for all B ∈ F0.
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2.3 Extension 2: Field to σ-Algebra

Let µ0 be a pre-pm defined on a field F0, i.e., a function µ0 : F0 → R that satisfies the
conditions:

1. A ∈ F0 ⇒ µ0(A) ≥ 0;
2. µ0(Ω) = 1;
3. {Ai} ⊂ F0 and Ai ∩ Aj = ∅ and ∪Ai ∈ F0 ⇒ µ0(∪Ai) =

∑

µ0(Ai).

Define two new set functions µ∗ and µ∗ on all subsets of Ω, i.e., on 2Ω, by:1

µ∗(E) := inf
[

∑

i∈N

µ0(Fi) : E ⊂
⋃

i∈N

Fi, Fi ∈ F0

]

µ∗(E) := 1− µ∗(Ec)

= sup
[

1−
∑

j∈N

µ0(Gj) : E
c ⊂

⋃

j∈N

Gj, Gj ∈ F0

]

On reflection it’s clear that µ∗(E) ≤ µ∗(E) (or, equivalently, that µ∗(E) + µ∗(Ec) ≥ 1) for
each set E ∈ 2Ω, since Ω ⊂

⋃

i∈N Fi ∪
⋃

j∈NGj, and µ∗(E) = µ0(E) = µ∗(E) for each set
E ∈ F0. Thus there is an obvious well-defined extension of µ0 to a set function µ defined on
the µ-completion of F := σ(F0),

F
µ
= {E ∈ 2Ω : µ∗(E) = µ∗(E)}

= {E ∈ 2Ω : µ∗(E) + µ∗(Ec) = 1}.

It remains to show three things:

1. The extension µ is nonnegative on F
µ
, with µ(Ω) = 1, and is countably additive.

Showing that µ(∪En) ≤
∑

µ(En) for disjoint {En} is a simple ǫ/2n argument, but it’s
harder to show that µ(∪En) ≥

∑

µ(En). It’s spelled out in Section (3) on page 12 of
these notes, or in Resnick (1999) §2.4 or Billingsley (1995), pp. 38–41.

2. F
µ
is a σF that contains F0, and hence also contains F := σ(F0) = λ(F0).

3. The extension to F is unique (show that for any two extensions µ1 and µ2, {E ∈ F :
µ1(E) = µ2(E)} is a λ-system containing the π-system F0, and apply Dynkin’s π−λ).

Warning: the appealing idea of defining µ∗(E) by approximating E from inside doesn’t

work— consider the inner Borel measure of the irrationals in (0, 1] with F0 = {∪i(ai, bi]}.
What’s the µ-completion for a discrete measure µ on R?

1Why do we need infinitely-many Fis? Why not just inf [µ0(F ) : E ⊂ F ]? See “Examples” below.
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2.4 Completions

It is possible that the σ-algebra F generated by F0 will not be “complete”, in the sense
that there may exist null sets N (i.e., events N ∈ F with µ(N) = 0) that have subsets

E ⊂ N that are not events, i.e., E /∈ F . The “µ-completion” F
µ
of F is the smallest

µ-complete σ-algebra containing F , and is the largest σ-algebra to which µ may be extended
unambiguously. Four characterizations of the µ-completion F

µ
of a σ-field F for a probability

(or σ-finite) measure µ on F are sometimes useful (you can prove their equivalence):

F
µ
:= {E ∈ 2Ω : µ∗(E) = µ∗(E)}

= {A ∪B : A ∈ F , B ⊂ N ∈ F , µ(N) = 0}

= {E ∈ 2Ω : ∃A,B ∈ F , s.t. A ⊂ E ⊂ B, µ(B\A) = 0}

= {E ∈ 2Ω : ∃A,N ∈ F , s.t. A∆E ⊂ N, µ(N) = 0}.

The σ-algebra F will be our main focus, and not its completion F
µ
. One reason is that F

µ

depends on µ while F is intrinsic. For example, the ν-completion of the Borel sets B on the
unit interval Ω = (0, 1] for any discrete probability measure ν is B

ν
= 2Ω. The completion

of the Borel sets on Ω for Lebesgue measure µ is the “Lebesgue sets” B
µ
, which (under the

axiom of choice) satisfy the strict inclusions B ( B
µ
( 2Ω.

2.5 Examples

2.5.1 Countable Probability Spaces

Suppose Ω has only finitely-many or countably-many elements, and let F := 2Ω be the
power set. Any probability measure P on (Ω,F) is completely determined by the numbers
{

pω := P
(

{ω}
)}

, the probabilities of singletons, since property P3 of Section (2) then gives

P[A] =
∑

ω∈A

pω (3)

for every (countable!) set A ⊂ Ω. Conversely, for any finite or countable set {pω} ∈ R+

that satisfies
∑

ω∈Ω pω = 1, (3) determines a probability assignment satisfying properties
P1, P2, P3.

2.5.2 Borel Measures on R

Let F0 be the π-system of semi-infinite intervals (−∞, b] for b ∈ R. Any probability measure
P on the Borel sets F of the real line R is completely determined by its distribution function

(DF) F : R→ [0, 1] given by

F (x) := P
(

(−∞, x]
)

(4)
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since (by P3) this determines P
(

(a, b]
)

= F (b) − F (a) on left-open intervals (a, b] and so
(again by P3) on F0. Since this π-system generates the Borel sets, the DF (4) determines P
on all of F . Conversely, for any function F : R→ [0, 1] satisfying the three rules

DF1 : x < y ⇒ F (x) ≤ F (y) (non-decreasing)
DF2 : F (x) = limyցx F (y) (right continuity)
DF3 : limx→−∞ F (x) = 0, limx→+∞ F (x) = 1 (0, 1 limits at ∓∞)

there is a unique Borel measure P on R,F satisfying (4).

If F (x) =
∫ x

−∞
f(t) dt for some nonnegative Borel-measurable function with integral

1 =
∫

R
f(t) dt, we call the DF F absolutely continuous (with respect to Lebesgue measure)

and notice that the relation

P
[

(a, b]
]

= F (b)− F (a) =

∫ b

a

f(t) dt =

∫

(a,b]

f(t) dt

extends from intervals (a, b] to their finite unions and, using limiting arguments we’ll study
in Week 6, to all Borel sets A:

P[A] =

∫

A

f(t) dt.

Explicit Example 1: Ex(1)

The function

F (x) :=

{

0 x < 0

1− e−x x ≥ 0

is a continuous DF (sketch a plot of it!), and so induces a unique probability measure on the
Borel sets of R that satisfies

µ
(

(a, b]
)

= e−a − e−b for 0 ≤ a ≤ b <∞

or, more generally,

µ(A) =

∫ ∞

0

1A(x) e
−x dx.

As we’ll see next week, this is the unit-rate Exponential Distribution Ex(1).

Explicit Example 2: Bi(1, p)

For any p ∈ [0, 1], the function

F (x) :=











0 x < 0

1− p 0 ≤ x < 1

1 1 ≤ x
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is a discrete DF, constant-valued except for jumps of size (1 − p) at x = 0 and p at x = 1,
where it is right-continuous (sketch a plot of it!). It induces a unique probability measure
on the Borel sets of R given by

µ(A) =



















0 if 0 /∈ A and 1 /∈ A

1− p if 0 ∈ A and 1 /∈ A

p if 0 /∈ A and 1 ∈ A

1 if 0 ∈ A and 1 ∈ A

As we’ll see next week, this is the Bernouli distribution Bi(1, p).

2.5.3 Uniform Distribution on (0, 1]n

Earlier (Example 3 on page 4) we constructed a measure µ on the σ-algebra F = σ(F0)
generated by a field F0 of subsets of the real line Ω = R based on a DF F (x). The same
approach works more generally, starting with a set assignment µ0 on any field F0 or, slightly
more generally, on any π-system. Any set function µ0 : A → R satisfying (1) (∀A ∈
A) µ0(A) ≥ 0, (2) µ0(Ω) = 1, and (3) µ0(∪Aj) =

∑

µ0(Aj) if Aj ∈ A, Ai ∩ Aj = ∅,
and ∪Aj ∈ A, has a unique extension to a signed measure µ(·) on σ(A), which will be a
probability measure if µ(A) ≥ 0 for each A ∈ F(A).

In particular this lets us construct Lebesgue measure λ(·) on the unit cube in Rn by
extending the pre-pm

λ0(A) =
n
∏

j=1

aj , A ∈ Pn :=
{

(0, a1]× (0, a2]× · · · × (0, an] : (∀j ≤ n) 0 ≤ aj ≤ 1
}

from the π-system Pn uniquely to a probability measure λ(·) on the Borel σ-algebra Bn =
λ(Pn), so we can explore some of its properties.

Lebesgue Measure of the Dyadic Rationals: λ(Q2) =?
Consider the unit interval Ω = (0, 1] and the π-system P consisting of intervals (0, q] for
dyadic rational numbers q ∈ Q2 := {i/2

n : i, n ∈ N0 := {0, 1, 2, ...}, i ≤ 2n}. The field F :=
F(P) generated by P consists of all finite disjoint unions ∪(ai, bi] of half-open intervals with
dyadic rational end-points 0 ≤ ai ≤ bi ≤ 1. One can show (Resnick does so in §2.5.1) that
the set function µ0

(

(0, q]
)

:= q on P extends to a countably additive set function µ on F .
What is the outer measure µ∗(Q2)? Note here that Ω contains all real numbers, not just the
rationals. Any finite cover ∪i≤nFi of Q2 with elements of F would also cover Ω = (0, 1] and
so would have

∑

µ(Fi) ≥ 1; does it follow that µ∗(Q2) ≥ 1????

Well, no. Since Q2 is countable, we can enumerate it as {qn : n ∈ N} and for any dyadic
rational ǫ > 0 we can cover Q2 with the countably infinite union ∪Fn where Fn = (an, bn]
with bn = qn and an = max(0, qn − ǫ/2n), with total length

∑

µ(Fn) =
∑

n

[qn −max(0, qn − ǫ/2n)] =
∑

n

min(qn, ǫ/2
n) ≤

∑

n

ǫ/2n = ǫ.
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Since µ(Q2) ≤ ǫ for every ǫ > 0, necessarily µ(Q2) = 0. This example illustrates why we
need infinite covers in the definition of µ∗.

Uniform Distribution on N?
Is it possible to construct a “uniform distribution on N”, that assigns to each set A ⊂ N its
asymptotic frequency

P (A) := lim
n→∞

#[A ∩ {1, ..., n}]

n
,

if that limit exists? Obviously the asymptotic frequency does exist for many sets— evens and
odds, divisible-by-n for any n, primes, squares, etc., and P is finitely-additive for disjoint sets
which each have an asymptotic frequency. If the collection of sets whose asymptotic frequency
exists is at least a field, then that might be a suitable model for a uniform distribution on
N. Let’s show that won’t work.

Let Ω = N be the natural numbers {1, 2, 3, ...}, E and Ec the even and odd integers
respectively, and set

F := ∪∞k=0{2
2k, ..., 22k+1 − 1}

= {1, 4, ..., 7, 16, ..., 31, 64, ..., 127, 256, ..., 511, ...}.

Notice that:

1. For n = 22k − 1, the ratio Pn(F ) := #[F ∩ {1, ..., n}]/n is exactly Pn(F ) = 1/3, while
for n = 22k+1 − 1 it is Pn(F ) = 2/3. Thus Pn(F ) cannot possibly converge as n→∞.

2. The even portion A := F ∩ E of F and odd portion B := F c ∩ Ec of F c both have
relative frequencies ranging from 1/6 to 1/3, which also cannot converge. In fact,
A = F ∩ E is exactly the same as the set 2 × (F c), while B = F c ∩ Ec is exactly the
same as the set 2× F + 1.

3. C := (A∪B) however DOES have an asymptotic frequency— in fact, |Pn(C)− 1
2
| ≤ 1

n

for all n ∈ N, so Pn(C)→ 1/2 as n→∞.

4. Thus E and C both have well-defined asymptotic frequencies (each is 1/2), but A =
E ∩ C does not.

Thus, the collection of sets S for which limn→∞ Pn(S) converges is not even a field, let alone
a σ-field, and there does not exist a uniform probability distribution on the integers.
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Extensions

So far we have focussed on constructing probability measures P on some space (Ω,F)
that satisfy the three rules

1. P(A) ≥ 0 for each A ∈ F ;

2. P(Ω) = 1;

3. For disjoint {Ai ∈ F}, P
(

∪i Ai

)

=
∑

i P(Ai).

The same approach would let us construct similar but more general objects, including
finite positive measures µ on a set Ω and σ-algebra F , by replacing condition 2 with
“µ(Ω) < ∞”, and σ-finite positive measures, with condition 2 replaced by “Ω = ∪iAi

with each Ai ∈ F and µ(Ai) <∞.” In particular, we can construct Lebesgue measure λ(dx)
on all of Rn.

The m-completion F
m
of the Borel σ-algebra F is called the “Lebesgue σ-algebra” on Rn;

it contains F and has the property of completeness, i.e., that N ∈ F
m
and λ(N) = 0 imply

that E ∈ F
m
and λ(E) = 0 for every E ⊆ N . The question of whether or not F

m
coincides

with 2Ω is delicate (it depends on the Axiom of Choice) and won’t concern us in this course,
but you can find more with google (for example, your search should discover Appendices
B or C of Frank Burk’s text Lebesgue Measure and Integration: An Introduction). You can
also ask me outside of class if you’re interested.
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3 Countable Additivity of Outer Measure µ∗ on F
µ

Let µ0 be countably additive on a field F0 on a space Ω and, for all subsets E ⊆ Ω, define
the outer measure µ∗ and inner measure µ∗ by

µ∗(E) := inf
[

∞
∑

i=0

µ0(Fi) : E ⊂
∞
⋃

i=0

Fi, {Fi} ⊂ F0

]

µ∗(E) := 1− µ∗(Ec)

and the µ-completion of F0,

F
µ
= {E ∈ 2Ω : µ∗(E) = µ∗(E)} = {E ∈ 2Ω : µ∗(E) + µ∗(Ec) = 1}

on which we define µ(E) := µ∗(E) = µ∗(E). Evidently µ “extends” µ0 in the sense that
F0 ⊂ F

µ
and, for any A ∈ F0, we have µ0(A) = µ(A). It is also clear that µ is (1) nonnegative

on F
µ
and (2) satisfies µ(Ω) = 1; here we verify that (3) µ is countably additive on F

µ
.

Let {En} ⊂ F
µ
be disjoint, and set E := ∪nEn. We will show that µ(E) =

∑

µ(En) in
two steps. First, the easy direction:

1. µ∗(E) ≤
∑

µ(En)

Fix ǫ > 0 and, for each n, find {Fni} ⊂ F0 with En ⊂ ∪iFni and

µ∗(En) ≤
∑

i

µ0(Fni) < µ∗(En) + 2−nǫ (5)

Then E := ∪nEn ⊂ ∪n,iFni and

µ∗(E) ≤
∑

n,i

µ0(Fni) <
∑

n

µ∗(En) + ǫ

verifying µ∗(E) ≤
∑

n µ(En).
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2. µ∗(E) ≥
∑

µ(En)

Still {En} ⊂ F
µ
are disjoint, and E := ∪nEn. Fix ǫ > 0 and N ∈ N (suggestion: work

through the case N = 2 first, and draw pictures). For each n ≤ N find {Fnj} ⊂ F0 with
Ec

n ⊂ ∪jFnj and

µ∗(Ec
n) ≤

∑

j

µ0(Fnj) < µ∗(Ec
n) + ǫ/N (6)

and, similarly, find {Gj} ⊂ F0 with E ⊂ ∪jGj and

µ∗(E) ≤
∑

j

µ0(Gj) < µ∗(E) + ǫ. (7)

For each fixed n, ∪jFnj covers every point outside En at least once, so ∪n,jFnj covers every
point outside ∪Nn=1En at least N times, and every point in Ω at least (N − 1) times. Since
∪jGj covers every point inside ∪Nn=1En ⊂ E once, the union

(

∪n,j Fnj

)
⋃

(

∪j Gj

)

covers
every point in Ω at least N times and, since µ∗(Ω) = 1, we have

N ≤
N
∑

n=1

∑

j

µ0(Fnj) +
∑

j

µ0(Gj)

≤
N
∑

n=1

µ∗(Ec
n) + ǫ + µ∗(E) + ǫ

= N −
N
∑

n=1

µ∗(En) + µ∗(E) + 2ǫ

= N −
N
∑

n=1

µ∗(En) + µ∗(E) + 2ǫ

so

µ∗(E) ≥
N
∑

n=1

µ∗(En)− 2ǫ

for every N ∈ N and every ǫ > 0, hence, since En ∈ F
µ
,

µ∗(E) ≥
∞
∑

n=1

µ(En).

Thus µ∗(E) =
∑∞

n=1 µ(En), completing the proof that µ is countably additive on F
µ
.
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4 Explicit Construction of Sigma Fields [optional]

Ordinals and Transfinite Induction

Every finite set S (say, with n < ∞ elements) can be totally ordered a1 ≺ a2 ≺ a3 ≺ · · · ≺
an in n! ways, but in some sense every one of these is the same— if ≺1 and ≺2 are two
orderings, there exists a 1–1 order-preserving isomorphism ϕ : (S,≺1)←→ (S,≺2). Thus up
to isomorphism there is only one ordering for any finite set.

For countably infinite sets there are many different orderings. The obvious one is a1 ≺
a2 ≺ a3 ≺ · · · , ordered just like the positive integers N; this ordering is called ω, the first
limit ordinal. But we could pick any element (say, b1 ∈ S) and order the remainder of S in
the usual way, but declare an ≺ b1 for every n ∈ N; one element is “bigger” (in the ordering)
than all the others. This is not isomorphic to ω, and it is called ω+1, the successor to ω. If
we set aside two elements (say, b1 ≺ b2) to follow all the others we have ω+ 2, and similarly
we have ω + n for each n ∈ N. The limit of all these is ω + ω, or 2ω... it is the ordering
we would get if we lexicographically ordered the set {(i, j) : i = 1, 2 j ∈ N} of the first two
rows of integers in the first quadrant, declaring (1, j) ≺ (2, k) for every j, k and otherwise
(i, j) ≺ (i, k) if j < k.

We would get the successor to this, 2ω + 1, by extending the lexicographical ordering as
we add (3, 1) to S; in an obvious way we get 2ω + n for every n ∈ N and eventually the
limit ordinals 3ω, 4ω, etc., and the successor ordinals mω + n. The limit of all these is ωω
or ω2, the lexicographical ordering of the entire first quadrant of integers (i, j). It too has
successors ω2 + n (graphically you can think about integer triplets (i, j, k)), and limits like
ω2 + ω and ω3 and ωω (which turns out to be the same as 2ω).

In general an ordinal is a successor ordinal if it has a maximal element, and otherwise is
a limit ordinal. Every ordinal α has a successor α + 1, and every set of ordinals {αn} has a
limit (least upper bound) λ. Let Ω be the first uncountable ordinal.

Proofs and constructions by transfinite induction typically have one step at ordinal zero,
one at each successor ordinal, and another at each limit ordinal. The Borel sets can be
defined by transfinite construction as follows.

Let F0 be the class of open subsets of some topological space X (perhaps the real numbers
X = R, for example).

Succ: For any ordinal α, let Fα+1 be the class of countable unions of sets En ∈ Fα and their
complements Em : Ec

m ∈ Fα.

Lim: For any limit ordinal λ, set Fλ := ∪α≺λFα.

Together these define a nested family Fα for all ordinals, limit and successor, with α ≺ β ⇒
Fα ⊂ Fβ. The sigma field generated by F0 is FΩ, where Ω is the first uncountable ordinal.
It remains to prove that FΩ = σ( open sets in X ), i.e., that:
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1. F0 ⊂ FΩ, i.e., FΩ contains the open sets (including X itself);

2. E ∈ FΩ =⇒ Ec ∈ FΩ, i.e., FΩ is closed under complements;

3. {En} ⊂ FΩ =⇒ ∪∞n=1En ∈ FΩ, i.e., FΩ is closed under countable unions;

4. FΩ ⊂ G for any sigma field G containing F0.

Item 1. is trivial since FΩ := ∪α≺ΩFα, and in particular contains F0. Item 2. follows by
noting that E ∈ Fα =⇒ Ec ∈ Fα+1. Item 3 follows by noting that En ∈ FΩ =⇒ En ∈ Fαn

for some αn ≺ Ω, and β := supn<∞ αn is a countable ordinal satisfying αn � β ≺ Ω. Hence
En ∈ Fβ for all n and ∪∞n=1En ∈ Fβ+1 ⊂ FΩ. Verifying the minimality condition Item 4
is left as an exercise in transfinite induction: show that Fβ ⊂ G first for β = 0, then for
successor ordinals β = α + 1, then for limit ordinals β = {α : α ≺ λ}, and conclude by
induction that Fβ ⊂ G for all β ≺ Ω and hence FΩ ⊂ G.

It isn’t immediately obvious from the construction that we couldn’t have stopped earlier—
for example, that F2 or Fω isn’t already the Borel sets, unchanging as we allow successively
more intersections and unions. In fact that does happen if the original space X is countable
or finite; in the case of R, however, one can show that Fα 6= Fα+1 for every α ≺ Ω.

Do you think this explicit construction is clearer or more complicated than the completion
argument used in the text?

Last edited: September 11, 2017
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