
STA 711: Probability & Measure Theory
Robert L. Wolpert

3 Random Variables & Distributions

Let Ω be any set, F any σ-field on Ω, and P any probability measure defined for each element
of F ; such a triple (Ω,F ,P) is called a probability space. Let R denote the real numbers
(−∞,∞) and B the Borel sets on R generated by (for example) the half-open sets (a, b].

Definition 1 A real-valued Random Variable is a function X : Ω → R that is “F\B-
measurable”, i.e., that satisfies X−1(B) := {ω : X(ω) ∈ B} ∈ F for each Borel set B ∈ B.

This is sometimes denoted simply “X−1(B) ⊂ F .” Since the probability measure P is
only defined on sets F ∈ F , a random variable must satisfy this condition if we are to be
able to find the probability P[X ∈ B] for each Borel set B, or even if we want to have a
well-defined distribution function (DF) FX(b) := P[X ≤ b] for each rational number b since
the π-system of sets B of the form (−∞, b] for b ∈ Q generates the Borel sets.

Set-inverses are rather well-behaved functions from one class of sets to another: for any
collection {Aα} ⊂ B, countable or not,

[X−1(Aα)]
c = X−1

(

Aα
c
)

and
⋃

α

X−1(Aα) = X−1
(

⋃

α

Aα

)

from which it follows that ∩α X
−1(Aα) = X−1

(

∩α Aα

)

. Thus, whether X is measurable or
not, X−1(B) is a σ-field if B is. It is denoted FX (or σ(X)), called the “sigma field generated
by X ,” and is the smallest sigma field G such that X is (G\B)- measurable. In particular,
X is (F\B)- measurable if and only if σ(X) ⊂ F .
Warning: The backslash character “\” in this notation is entirely unrelated to the backslash
character that appears in the common notation for set exclusion, A \B := A ∩Bc.

In probability and statistics, sigma fields represent information: a random variable Y
is measurable over FX if and only if the value of Y can be found from that of X , i.e., if
Y = ϕ(X) for some function ϕ. Note the difference in perspective between real analysis, on
the one hand, and probability & statistics, on the other: in analysis it is only Lebesgue mea-
surability that mathematicians worry about, and only to avoid paradoxes and pathologies.
In probability and statistics we study measurability for a variety of sigma fields, and the
(technical) concept of measurability corresponds to the (empirical) notion of observability.

3.1 Distributions

A random variable X on a probability space (Ω,F ,P) induces a measure µX on (R,B), called
the distribution measure (or simply the distribution), via the relation

µ(B) := P[X ∈ B],
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sometimes written more succinctly as µX = P ◦X−1 or even PX−1.

3.1.1 Functions of Random Variables

Let (Ω,F ,P) be a probability space, X a (real-valued) random variable, and g : R → R a
(real-valued B\B) measurable function. Then Y = g(X) is a random variable, i.e.,

Y −1(B) = X−1(g−1(B)) ∈ F

for any B ∈ B. How are σ(X) and σ(Y ) related?

Pretty much every function g : R → R you’ll ever encounter is Borel measureable.
In particular, a real-valued function g(x) is Borel measurable if it is continuous, or right-
continuous, or piecewise continuous, or monotonic, or the countable limits, suprema, etc. of
such functions.

3.2 Random Vectors

Denote by R2 the set of points (x, y) in the plane, and by B2 the sigma field generated by
rectangles of the form {(x, y) : a < x ≤ b, c < y ≤ d} = (a, b] × (c, d]. Note that finite
unions of those rectangles (with a, b, c, d in the extended reals [−∞,∞]) form a field F2

0 , so
the minimal sigma field and minimal λ system containing F2

0 coincide, and the assignment
λ2
0

(

(a, b]× (c, d]
)

= (b−a)× (d− c) of area to rectangles has a unique extension to a measure
on all of B2, called two-dimensional Lebesgue measure (and denoted λ2). Of course, it’s just
the area of sets in the plane.

An F\B2-measurable mapping X : Ω → R2 is called a (two-dimensional) random vector,
or simply an R2-valued random variable, or (a bit ambiguously) an R2-RV. It’s easy to show
that the components X1, X2 of a R2-RV X are each RVs, and conversely that for any two
random variablesX1 andX2 the two-dimensional RV (X1, X2) : Ω → R2 is F\B2-measurable,
i.e., is a R2-RV (how would you prove that?).

Also, any Borel measurable (and in particular, any piecewise-continuous) real function
f : R2 → R induces a random variable Z := f(X, Y ). This shows that such combinations as
X + Y , X/Y , X ∧ Y , X ∨ Y , etc. are all random variables if X and Y are.

The same ideas work in any finite number of dimensions, so without any special notice we
will regard n-tuples (X1, ..., Xn) as R

n-valued RVs, or F\Bn-measurable functions, and will
use Lebesgue n-dimensional measure λn on Bn. Again

∑

i Xi,
∏

iXi, mini Xi, and maxi Xi

are all random variables. For any metric space (E, d) with Borel sets E , an F\E-measurable
function X : Ω → E will be called an “E-valued random variable” (although some authors
prefer the term “random element of E” unless E is R or perhaps Rn).

Even if we have countably infinitely many random variables we can verify the measura-
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bility of
∑

i Xi, inf i Xi, and supi Xi, and of lim inf i Xi, and lim supi Xi as well: for example,

[ω : sup
i∈N

Xi(ω) ≤ r] =
∞
⋂

i=1

[ω : Xi(ω) ≤ r]

[ω : lim sup
i→∞

Xi(ω) ≤ r] =

∞
⋃

j=1

∞
⋂

i=j

[ω : Xi(ω) ≤ r] = lim inf
i→∞

[ω : Xi(ω) ≤ r],

so supXi and lim supXi are random variables if {Xi} are. The event “Xi converges” is the
same as

[

ω : lim sup
i

Xi(ω)− lim inf
i

Xi(ω) = 0

]

=
∞
⋂

k=1

∞
⋃

n=1

∞
⋂

i,j=n

[ω : |Xi(ω)−Xj(ω)| < ǫk]

for any positive sequence ǫk → 0, and so is F -measurable and has a well defined probability
P[lim supi Xi = lim inf i Xi]. This is one point where countable additivity (and not just finite
additivity) of P is crucial, and where F must be a sigma field (and not just a field).

3.3 Example: Discrete RVs

If an RV X can take on only a finite or countable set of distinct values, say {bi}, then each
set Λi = {ω : X(ω) = bi} must be in F . The random variable X can be written:

X(ω) =
∑

i

bi1Λi
(ω), where (*)

1Λ(ω) :=

{

1 if ω ∈ Λ

0 if ω /∈ Λ
(1)

is the so-called indicator function of Λ ∈ F . Since Ω = ∪Λi and Λi ∩ Λj = ∅ for i 6= j, the
{Λi} form a “countable partition” of Ω. Any RV can be approximated uniformly as well
as we like by an RV of the form (∗) (how?). Note that the indicator function 1A of the
limit supremum A := lim supi Ai of a sequence of events is equal pointwise to the indicator
1A(ω) = lim supi 1Ai

(ω) of their limit supremum (can you show that?). The distribution of
a discrete RV X is given for Borel sets B ⊂ R by

µX(B) =
∑

{P(Λj) : bj ∈ B},

the probablity P
[

X ∈ B
]

= P
[

∪ {Λj : bj ∈ B}
]

that X takes a value in B.
Arbitrary Functions of Discrete RVs

If Y = φ(X) for any function φ : R → R, then Y is a random variable with the discrete
distribution:

µY (B) =
∑

{P(Λj) : φ(bj) ∈ B}
for all Borel sets B ∈ B, the probablity P

[

Y ∈ B
]

= P
[

∪ {Λj : φ(bj) ∈ B}
]

= µX

(

φ−1(B)
)

that Y takes a value in B.
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3.4 Example: Absolutely Continuous RVs

If there is a nonnegative function f(x) on R with unit integral 1 =
∫

R
f(x) dx whose definite

integral gives the CDF

F (x) := P[X ≤ x] =

∫ x

−∞
f(t) dt

for X , then the distribution for X can be given on Borel sets B ⊂ R by the integral

µX(B) := P[X ∈ B] =

∫

B

f(x) dx =

∫

R

f(x)1B(x) dx (2)

of the pdf f(x) over the set B. This is immediate for sets of the form B = (∞, x], but these
form a π-system and so by Dynkin’s extension theorem it holds for all sets B in the σ-field
they generate, the Borel sets B(R).
Smooth Functions of Continuous RVs

If Y = φ(X) for a strictly non-decreasing differentiable function φ : R → R, and if X has
pdf f(x), then Y has a pdf g(y) too, for then with y = φ(x) we have

G(y) := P[Y ≤ y]

= P[φ(X) ≤ φ(x)]

= P[X ≤ x]

= F (x)

=

∫ x

−∞
f(t) dt

Upon differentiating both sides wrt x, using the chain rule for y = φ(x),

G′(y)φ′(x) = f(x),

so G(y) has a pdf g(y) = G′(y) given by

g(y) = f(x)/φ′(x), x = φ−1(y).

In this context the derivative φ′(x) is called the Jacobian of the transformation X  Y :=
φ(X). Note this didn’t come up in change-of-variables for discrete RVs above.

More generally, if φ is everywhere differentiable but not necessarily monotone, with a
derivative φ′(x) that vanishes on at most countably many points, there can be at most
countably many solutions x to φ(x) = y for each y ∈ R and Y = φ(X) will have pdf

g(y) =
∑

x∈φ−1(y)

f(x)

|φ′(x)| (3)

and the distribution of Y = φ(X) will be given by

µY (B) =

∫

B

g(y) dy.
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3.4.1 Specific Absolutely Continuous Examples

• The standard No(0, 1) Normal or Gaussian distribution is given by

µZ(A) :=

∫

A

f(z | 0, 1) dz, f(z | 0, 1) := (2π)−1/2e−z
2/2

for all Borel A ∈ B, with pdf f(z | 0, 1).

• The Normal No(µ, σ2) distribution is that of Y = φ(Z) for φ(z) := µ + σz and Z ∼
No(0, 1). By (3) its pdf is

f(y | µ, σ2) =
∑

z: φ(z)=y

f(z | 0, 1)
|φ′(z)|

=
∑

z: µ+σz=y

(2π)−1/2e−z
2/2

σ

= (2πσ2)−1/2 exp
(

− (y − µ)2

2σ2

)

and the No(µ, σ2) distribution is

µY (A) :=

∫

A

f(y | µ, σ2) dy.

• The chi-squared χ2
1 distribution with one degree of freedom is that of X = φ(Z) for

φ(z) := z2 and Z ∼ No(0, 1). By (3) its pdf is

g(x) =
∑

z: φ(z)=x

f(z | 0, 1)
|φ′(z)|

=
∑

z: z2=x

(2π)−1/2e−z
2/2

|2z|

=
(2π)−1/2e−(+

√
x)2/2

|+ 2
√
x| +

(2π)−1/2e−(−
√
x)2/2

| − 2
√
x| if x > 0

= (2πx)−1/2e−x/21{x>0},

the same as the Ga(1/2, 1/2), and the χ2
1 distribution is

µX(A) :=

∫

A

g(x) dx.
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3.5 Example: Infinite Coin Toss

For each ω ∈ Ω = (0, 1] and integer n ∈ N let δn(ω) be the nth bit in the nonterminating
binary expansion of ω, so ω =

∑

n δn(ω)2
−n. There’s some ambiguity in the expansion of

dyadic rationals— for example, one-half can be written either as 0.10b or as the infinitely
repeating 0.01111111...b. If we had used the convention that the dyadic rationals have only
finitely many 1s in their expansion (so 1/2 = 0.10b) then δn(ω) = ⌊2nω⌋ (mod 2); with our
convention (“nonterminating”) that all expansions must have infinitely many ones, we have

δn(ω) = (⌈2nω⌉+ 1) (mod 2). (4)

We can think of {δn} as an infinite sequence of random variables, all defined on the
same measurable space (Ω,B1), with the random variable δ1 equal to zero on (0, 1

2
] and one

on (1
2
, 1]; δ2 equal to zero on (0, 1

4
] ∪ (1

2
, 3
4
] and one on (1

4
, 1
2
] ∪ (3

4
, 1]; and, in general, δn

equal to one on a union of 2n−1 left-open intervals, each of length 2−n (for a total length
of 1

2
), and equal to zero on the complementary set, also of length 1

2
. For the Lebesgue

probability measure P on Ω that just assigns to each event E ∈ B1 its length P(E), we have
P[δn = 0] = P[δn = 1] = 1

2
for each n, independently.

Q 1: If we had used the other convention that every binary expansion must have infinitely
many zeroes (instead of ones), so e.g. 1/2 = 0.10b, then what would the event
E1 := {ω : δ1(ω) = 1} have been? How about E2 := {ω : δ2(ω) = 1}?

The sigma field “generated by” any family of random variables {Xα} (finite, countable, or
uncountable) is defined to be the smallest sigma field for which each Xα is measurable, i.e.,
the smallest sigma field σ(A) containing every set in the collection

Aα = Xα
−1(B(R)

)

=
{

Xα
−1(B) : B ∈ B(R)

}

.

For each n ∈ N the σ−algebra Fn on Ω = (0, 1] generated by {δ1, · · · , δn} is the field

Fn = {∪i(ai/2
n, bi/2

n] : 0 ≤ ai < bi ≤ 2n} (5)

consisting of disjoint unions of left-open intervals in Ω whose endpoints are integral multiples
of 2−n. Each set in Fn can be specified by listing which of the 2n intervals ( i

2n
, i+1

2n
] (0 ≤

i < 2n) it contains, so there are 22
n

sets in Fn altogether. The union ∪Fn consists of all
finite disjoint unions of left-open intervals in Ω with dyadic rational endpoints. It is closed
under taking complements and finite unions, but it still isn’t a sigma field since it isn’t closed
under countable unions and intersections. For example, it contains the set En = {ω : δn=1}
for each n ∈ N and their finite intersections like E1 ∩ ... ∩ En = (1 − 2−n, 1], but not their
countable intersection ∩∞n=1En = {1}. By definition the “join” F =

∨

n Fn := σ(∪nFn) is
the smallest sigma field that contains each Fn (and so contains their union); this is just the
familiar Borel sets on (0, 1].

Lebesgue measure P, which assigns to any interval (a, b] its length, is determined on each
Fn by the rule P

{

∪i (ai/2
n, bi/2

n]
}

=
∑

(bi−ai)2
−n or, equivalently, by the joint distribution

of the random variables δ1, ..., δn: independent Bernoulli RVs, each with P[δi = 1] = 1
2
.
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For any number 0 < p < 1 we can make a similar measure Pp on (Ω,Fn) by requiring
Pp[δn = 1] = p and, more generally,

P[δi = di, 1 ≤ i ≤ n] = pΣdi(1−p)n−Σdi .

The four intervals in F2 would have probabilities [(1−p)2, p(1−p), p(1−p), p2], for example,
instead of [1

4
, 1

4
, 1

4
, 1

4
]. This determines a measure on each Fn, which extends uniquely to

a measure Pp on F =
∨

n Fn. For p = 1/2 this is Lebesgue Measure, characterized by the
property that P {(a, b]} = b − a for each 0 ≤ a ≤ b ≤ 1, but the other Pps are new. This
example (the family δn of random variables on the spaces (Ω,F ,Pp)) is an important one,
and lets us build other important examples.

Under each of these probability distributions all the δn are both identically distributed
and independent, i.e.,

P[δ1 ∈ A1, . . . , δn ∈ An] =

n
∏

i=1

P[δ1 ∈ Ai].

Any probability assignment to intervals (a, b] ⊂ Ω determines some joint probability distri-
bution for all the {δn}, but typically the δn will be neither independent nor identically
distributed. For any DF (i.e., non-decreasing right-continuous function F (x) satisfying
F (0) = 0 and F (1) = 1), the prescription PF {(a, b]} := F (b)−F (a) determines a probability
distribution on every Fn that extends uniquely to F , determining the joint distribution of
all the {δn}.
Q 2: For F (x) = x2, are δ1 and δ2 identically distributed? Independent? Find the

marginal probability distribution for each δn under PF .
Q 3: For F (x) = 1{x≥1/3}, find the distribution of each δn under PF .

3.6 Measurability and Observability

We will often consider a number of different σ-algebras Fn on the same set Ω— for example,
those generated by families of events or random variables. In this section we’ll illustrate how
σ-fields represent information, a theme that will continue into our later study of conditioning.

3.6.1 An example: Random Walks and Bernoulli Sequences

Fix any measure Pp on (Ω,F) (say, Lebesgue measure P = P0.5), and define a new sequence
of random variables Yn on (Ω,F ,P) by

Yn(ω) :=
n

∑

i=1

(−1)1+δi(ω) =
n

∑

i=1

(

2δi(ω)− 1
)

,

the sum of n independent terms, each ±1 with probability 1/2 each. This is the “symmetric
random walk” (it would be asymmetric with Pp for p 6= 0.5), starting at the origin and
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moving left or right with equal probability at each step. Each Yn is (2Sn − n) for the
binomial Bi(n, 0.5) random variable Sn :=

∑n
i=1 δi, the partial sums of the δns.

For each fixed n ∈ N the three sigma fields

Fn := σ {δi : 1 ≤ i ≤ n} = σ {Yi : 1 ≤ i ≤ n} = σ {Si : 1 ≤ i ≤ n}

are all identical, and in fact coincide with the σ-algebra constructed in Eqn (5): all disjoint
unions of half-open intervals with endpoints of the form j2−n. A random variable Z on
(Ω,F ,P) is Fn-measurable if and only if Z can be written as a function Z = ϕn(δ1, . . . , δn)
of the first n δs (see subsection 3.6.2 below). Thus “measurability” means something for
us— Z is measurable over Fn if and only if you can tell its value by observing the first
n values of δi (or, equivalently, of Yi or Si— each of these gives the same information Fn).
We’ll see that a function Z on Ω is F -measurable (i.e., is a random variable) if and only if
you can approximate it arbitrarily well by a function of the first n δis, as n → ∞.

For example, the RVs Yn and Sn are in Fm for m ≥ n, but not for m < n. The RV
Z := min{n : Yn ≥ 1} is in F = σ

{

∪n∈N Fn

}

, but not in Fn for any n ∈ N.

3.6.2 Sub-σ-fields

Proposition 1 Let X and Y be real-valued random variables on a probability space (Ω,F ,P).
Then σ(Y ) ⊂ σ(X) if and only if there exists a Borel function g : R → R for which Y = g(X).

Proof. First, suppose Y = g(X) for a Borel-measurable g : R → R. Then for any Borel
B ∈ B = B(R),

Y −1(B) = X−1
(

g−1(B)
)

∈ X−1(B) = σ(X)

and so σ(Y ) ⊂ σ(X).

Now suppose σ(Y ) ⊂ σ(X). For each j ∈ Z and n ∈ N, the event

An
j :=

{

ω : j2−n ≤ Y (ω) < (j + 1)2−n
}

is in σ(Y ) ⊂ σ(X), so there is a Borel set Bn
j ∈ B for which An

j = X−1(Bn
j ). Since the

{An
j : j ∈ Z} are disjoint for fixed n ∈ N, we may take the {Bn

j : j ∈ Z} to be disjoint as
well. Set:

gn(x) :=
∑

j∈Z
j2−n1{Bn

j
}(x)

and verify that
gn(X) ≤ Y < gn(X) + 2−n.

Now set g(x) := lim supn→∞ gn(x) and verify that Y = g(X).
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3.7 Selecting a Probability Space Ω

Let µ be a specified probability distribution on some metric space E, i.e., a probability
measure on the Borel sets E of E (for example, E might be R or RN). How can we construct
a probability space (Ω,F ,P) and random element X : Ω → E with distribution µ?

If µ is a discrete measure with finite support, i.e., if µ(S) = 1 for some finite set S =
{x1, · · · , xn} ⊂ E, then one possibility is to let Ω = {ω1, · · · , ωn} be any finite set with n
elements and set F := 2Ω, pi := µ({xi}), X(ωi) := xi, and set

P[A] :=
∑

ωi∈A
pi =

∑

i

pi1A(ωi).

For example, to model the outcome of two distinguishable dice (not necessarily fair ones)
we could use any set Ω with (at least) 36 distinct elements (for indistinguishable dice we
would need only 21 distinct elements; if only the sum is of interest then 11 elements would
do). Similarly, if µ is any discrete measure then we could construct a suitable model with
Ω = N and Ω = 2Ω by enumerating the support points xn of µ and setting X(n) := xn,
P[A] :=

∑{µ({xn}) : n ∈ A}.
But these aren’t the only choices. If µ is discrete with a finite number n of support points,

then any set Ω with n or more points can serve. Or, we could construct a random variable
X with any distribution at all, on the unit interval Ω = (0, 1] with the Borel sets F = B and
Lebesgue measure P (we do this in Section (3.7.2) below). In any particular problem we are
free to choose a space (Ω,F ,P) that makes our calculations as clear and simple as possible.

3.7.1 The Canonical Space

One space that will always work is to select Ω = E itself, with its Borel sets F = E , with
P = µ and X(ω) = ω. This is called the “canonical space”. For example, a (real-valued)
Random Variable X can be constructed with any distribution µ on (R,B) by setting

Ω = R F = B P = µ X(ω) = ω.

3.7.2 The Inverse CDF Method

We can build real-valued random variables with any specified distribution on the unit interval
with Lebesgue measure, as follows. Let (Ω,F ,P) =

(

(0, 1],B,P
)

be the unit interval with the
Borel sets and Lebesgue measure, and let F (x) be any DF— non-decreasing, right-continuous
function on R with limits F (−∞) = 0 and F (∞) = 1. Define a real-valued1 random variable
X on (Ω,F ,P) by

X(ω) = F←(ω) := inf{x ∈ R : F (x) ≥ ω}
1If the support of µ is unbounded, i.e., if F (x) < 1 for all x ∈ R, this could be extended real-valued since

X(1) would be infinite. Simply set X(1) = 0 (say) and use the given expression for ω ∈ (0, 1) to construct a
(finite) real-valued random variable with the same distribution.
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Then X is a random variable on (Ω,F ,P) with DF F , because for any x ∈ R

{ω : X(ω) ≤ x} = (0, F (x)]

whose Lebesgue measure is F (x). For continuous and strictly monotone DFs, F←(ω) coin-
cides with the inverse F−1(ω), so this is called the inverse CDF method of generating random
variables with specified distributions— but the method still works even if F isn’t continuous
or strictly monotone. For some examples, we could take X = Φ−1(ω) to get a No(0, 1) RV
or X = − log(1− ω) for one with the unit exponential distribution or X = 1{ω>1−p} for the
Bernoulli Bi(1, p) distribution.

3.7.3 Uniforms, Normals, And More

From the infinite sequence of independent random bits {δn} we can construct as many
independent random variables as we like of any distribution, all on the same space (Ω,F ,P),
the unit interval with Lebesgue measure (length). For example, set:

U1(ω) :=
∞
∑

i=1

2−iδ2i(ω) U3(ω) :=
∞
∑

i=1

2−iδ5i(ω)

U2(ω) :=

∞
∑

i=1

2−iδ3i(ω) U4(ω) :=

∞
∑

i=1

2−iδ7i(ω)

each the sum of different (and therefore independent) random bits. It is easy to see that
{Un} will be independent, uniformly distributed random variables for n = 1, 2, 3, 4, and that
we could construct as many of them as we like using successive primes {2, 3, 5, 7, 11, 13, ...}.
Q 4: Why did I use primes in δ2i , δ3i , δ5i , δ7i? Give another choice that would work.

Using the Inverse CDF method, for any DF F (x) we can construct independent random
variables Xn(ω) = F←(Un) := inf[x ∈ R : F (x) ≥ Un(ω)], each with DF F (x) = P[Xn ≤ x];
or, if we have any sequence {Fn} of DFs, we could construct independent random variables
Xn(ω) = F←n (Un) with arbitrary specified distributions, all on the same probability space
(Ω,F ,P) =

(

(0, 1],B,P
)

. For example, we could take Xn = Φ−1(Un) to get independent
random variables with the standard normal distribution, or Xn = − log(1 − Un) for unit
exponentially-distributed random variables.

Independent normal random variables can be constructed even more efficiently via:

Z1(ω) := cos(2πU1)
√

−2 logU2 Z3(ω) := cos(2πU3)
√

−2 logU4

Z2(ω) := sin(2πU1)
√

−2 logU2 Z4(ω) := sin(2πU3)
√

−2 logU4.

We’ve seen that from ordinary length (Lebesgue) measure on the unit interval (or, equiv-
alently, from a single uniformly-distributed random variable ω) we can construct first an
infinite sequence of independent 0/1 bits δn; then an infinite sequence of independent uni-
form random variables Un; then an infinite sequence of independent random variables Xn

with any distribution(s) we choose.
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3.7.4 The Cantor Distribution

Set Y :=
∑∞

n=1 2δn3
−n for the random variables δn(ω) of Eqn (4). Then the ternary expansion

of y = Y (ω) includes only zeroes (where δn = 0) and twos (where δn = 1), never ones, and
so y lies in the Cantor set C = Y (Ω). Since Y takes on uncountably many different values,
it cannot have a discrete distribution. Its CDF can be given analytically by the expression

F (y) =

∞
∑

n=1

{2−n : tn > 0, tm 6= 1, 1 ≤ m < n},

in terms of the ternary expansion tn := ⌊3ny⌋(mod 3) of y =
∑∞

n=1 tn3
−n or graphically as

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
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x

y

Cantor function

Evidently F (x) is continuous, and has derivative F ′ = 0 wherever it is differentiable, i.e.,
outside the Cantor set. This distribution is an example of a singular distribution, one that
has no absolutely continuous or discrete part. We won’t see many more of them.

Theorem 1 Let F (x) be any distribution function. Then there exist unique numbers pd ≥ 0,
pac ≥ 0, psc ≥ 0 with pd + pac + psc = 1 and distribution functions Fd(x), Fac(x), Fsc(x) with
the properties that Fd is discrete with some probability mass function fd(x), Fac is absolutely
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continuous with some probability density function fac(x), and Fsc is singular continuous,

satisfying F (x) = pdFd(x) + pacFac(x) + pscFsc(x) and

Fd(x) =
∑

t≤x
fd(t), Fac(x) =

∫

t≤x
fac(t) dt, F ′sc(x) = 0 where it exists.

Proof. Easy— pick off the jumps of F (x) first (at most countably many, by a HW problem),
to build Fd and find pd; then pick off the pdf proportional to F ′, where that exists, for Fac

and pac; and build Fsc and find psc from whatever’s left.

3.8 Expectation and Integral Inequalities

This section is just a peek ahead at material presented in more detail in the lecture notes
for Week 4.

Discrete RVs

A random variable Y is discrete if it can take on only a finite or countably infinite set of
distinct values {bi}. Then (recall Section (3.3) on p. 3) Y can be represented in the form

Y (ω) =
∑

i

bi1Λi
(ω) (6)

as a linear combination of indicator functions of the disjoint measurable sets Λi := X−1(bi).
Any RV X can be approximated as well as we like by a simple RV of the form (⋆) by choosing
ǫ > 0, setting bi := iǫ for i ∈ Z, and

Λi := {ω : bi ≤ X(ω) < bi + ǫ} Xǫ(ω) :=
∞
∑

−∞
bi1Λi

(ω) = ǫ ⌊X(ω)/ǫ⌋

soX−ǫ < Xǫ ≤ X . It is easy to define the expectation of such a discrete RV, or (equivalently)
the integral of Xǫ over (Ω,F ,P), if X is bounded below or above (to avoid indeterminate
sums):

EXǫ :=

∫

Ω

Xǫ(ω)P(dω) :=

∫

Ω

Xǫ dP :=
∑

i

biP(Λi),

Since Xǫ(ω) ≤ X(ω) < Xǫ(ω) + ǫ, we have EXǫ ≤ EX < EXǫ + ǫ, i.e.,

∑

i

iǫP[iǫ ≤ X < (i+1)ǫ] ≤ EX <
∑

i

iǫP[iǫ ≤ X < (i+1)ǫ] + ǫ. (⋆⋆)

This determines the value of EX =
∫

Ω
X dP for each random variable X bounded above

or below. If we take ǫ = 2−n above, and simplify the notation by writing Xn for X2−n =
2−n⌊2nX⌋, the sequence Xn increases monotonically to X and we can define EX := limn EXn.
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Note that even for Ω = (0, 1], P = λ(dx) (Lebesgue measure), and X continuous, the
value of the integral may be the same but the passage to the limit suggested in (⋆⋆) is not the
same as the limit of Riemann sums that is used to introduce integration in undergraduate
calculus courses. For the Riemann sum it is the x-axis that is broken up into integral
multiples of some ǫ, determining the integral of continuous functions, while here it is the
y axis that is broken up, determining the integral of all measurable functions. The two
definitions of integral agree for continuous functions where they are both defined, of course,
but the Lebesgue integral is much more general.

If X is not bounded below or above, we can set X+ := 0∨X and X− := 0∨−X , so that
X = X+−X− with bothX+ andX− bounded below (by zero), so their expectations are well-
defined. If either EX+ < ∞ or EX− < ∞ we can unambiguously define EX := EX+−EX−,
while if EX+ = EX− = ∞ we regard EX as undefined. For example, if U ∼ Un(0, 1)
then E

[

1/
√

U(1− U)
]

and E
[

1/
(

U(1−U)
)]

are well-defined (can you evaluate them?), but
E
[

1/(1− 2U)
]

is not.

For any measurable set Λ ∈ F we write
∫

Λ
X dP for EX1Λ. For Ω ⊂ R, if P gives positive

probability to either {a} or {b} then the integrals over the sets (a, b), (a, b], [a, b), and [a, b]

may all be different, so the notation
∫ b

a
X dP isn’t expressive enough to distinguish them.

Instead we write
∫

(a,b)
X dP,

∫

(a,b]
X dP, etc. or, equivalently,

∫

1(a,b)X dP,
∫

1(a,b]X dP, etc.

Frequently in Probability and Statistics we need to calculate or estimate or find bounds
for integrals and expectations. Usually this is done through limiting arguments in which a
sequence of integrals is shown to converge to the one whose value we need. Here are some
important properties of integrals for any measurable set Λ ∈ F and random variables {Xn},
X , Y , useful for bounding or estimating the integral of a random variable X . We’ll prove
each of these in class.

1.
∫

Λ
X dP is well-defined and finite if and only if

∫

Λ
|X| dP < ∞, and

∣

∣

∣

∫

Λ
X dP

∣

∣

∣
≤

∫

Λ
|X| dP. We can also define

∫

Λ
X dP ≤ ∞ for anyX bounded below by some b > −∞.

2. Lebesgue’s Monotone Convergence Thm: If 0 ≤ Xn ր X , then
∫

Λ
Xn dP ր

∫

Λ
X dP ≤ ∞. In particular, the sequence of integrals converges (possibly to +∞).

3. Lebesgue’s Dominated Convergence Thm: If Xn → X , and if |Xn| ≤ Y for
some RV Y ≥ 0 with EY < ∞ then

∫

Λ
|Xn − X| dP → 0,

∫

Λ
Xn dP →

∫

Λ
X dP, and

∫

Λ
|X| dP ≤

∫

Λ
Y dP < ∞. In particular, the sequence of integrals converges to a finite

limit, EXn → EX with |EX| ≤ EY .

4. Fatou’s Lemma: If Xn ≥ 0 on Λ, then
∫

Λ

(lim infXn) dP ≤ lim inf
(

∫

Λ

Xn dP
)

.

The two sides may be unequal (example?), and the result is false for lim sup. Is
“Xn ≥ 0” necessary? Can it be weakened?
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5. Fubini’s Thm: If either each Xn ≥ 0, or
∑

n

∫

Λ
|Xn| dP < ∞, then the order of

integration and summation can be exchanged:
∑

n

∫

Λ
Xn dP =

∫

Λ

∑

n Xn dP. If both
these conditions fail, the orders may not be exchangeable (example?)

6. For any p > 0, E|X|p =
∫∞
0

p xp−1P[|X| > x] dx and E|X|p < ∞ ⇔ ∑∞
n=1 np−1P[|X| ≥

n] < ∞. The case p = 1 is easiest and most important: if S :=
∑∞

n=1 P[|X| ≥ n] < ∞,
then S ≤ E|X| < S+1. If X takes on only integer values, E|X| = S.

7. If µX is the distribution of X , and if f is a measurable real-valued function on R,
then Ef(X) :=

∫

Ω
f(X(ω)) dP =

∫

R
f(x)µX(dx) if either side exists. In particular,

µ := EX =
∫

xµX(dx) and σ2 := E(X − µ)2 =
∫

(x− µ)2 µX(dx) =
∫

x2 µX(dx) − µ2.

8. Hölder’s Inequality: Let p > 1 and q = p
p−1 (e.g., p = q = 2 or p = 1.01, q = 101).

Then EXY ≤ E |XY | ≤
[

E|X|p
]

1
p
[

E|Y |q
]

1
q . More generally, if 1

p
+ 1

q
= 1

r
for p, q, r ∈

[1,∞], then ‖XY ‖r ≤ ‖X‖p‖Y ‖q. In particular, for p = q = 2 and r = 1,

Cauchy-Schwartz Inequality: EXY ≤ E |XY | ≤
√
EX2 EY 2.

9. Minkowski’s Inequality: Let 1 ≤ p ≤ ∞ and let X, Y ∈ Lp(Ω,F ,P). Then

(E|X + Y |p) 1
p ≤ (E|X|p) 1

p + (E|Y |p) 1
p

so the norm ‖X‖p := (E|X|p) 1
p obeys the triangle inequality on Lp(Ω,F ,P).

What if 0 < p < 1?

10. Jensen’s Inequality: Let ϕ(x) be a convex function on R, X an integrable RV. Then
ϕ
(

E[X ]
)

≤ E[ϕ(X)]. Examples: ϕ(x) = |x|p, p ≥ 1; ϕ(x) = ex; ϕ(x) = [0 ∨ x]. The
equality is strict if X has a non-degenerate distribution and ϕ(·) is strictly convex on
the range of X .

11. Markov’s & Chebychev’s Inequalities: If ϕ is positive and increasing, then P[|X| ≥
u] ≤ E[ϕ(|X|)]/ϕ(u). In particular P[|X − µ| > u] ≤ σ2

u2 and P[|X| > u] ≤ σ2+µ2

u2 .

12. One-Sided Version: P[X > u] ≤ σ2

σ2+(u−µ)2
(pf: P[(X − µ+ t) > (u− µ+ t)] ≤ ? for t ∈ R)

13. Hoeffding’s Inequality: If {Xj} are real-valued, independent and essentially bounded,
so (∃ {aj, bj}) s.t. P[aj ≤ Xj ≤ bj ] = 1, then (∀c > 0), Sn :=

∑n
j=1Xj satisfies the

bound P[Sn − ESn ≥ c] ≤ exp
(

− 2c2/
∑n

1 |bj − aj|2
)

. Hoeffding proved this im-
provement on Chebychev’s inequality (at UNC) in 1963. See also related Azuma’s
inequality (1967), Bernstein’s inequality (1937), and Chernoff bounds (1952).

The importance of this result is that it offers an exponentially small (in c2) bound for
tail probabilities, while Chebychev offers only an algebraic bound on the order of 1/c2.
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Later we will find needs for the bound to be summable in c2; Hoeffding’s satisfies this
condition, while Chebychev’s does not.

Last edited: September 18, 2017
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