
STA 711: Probability & Measure Theory

Robert L. Wolpert

9 Sums of Independent Random Variables

We ontinue our study of sums of independent random variables, S

n

= X

1

+ � � � + X

n

. If

eah X

i

is square-integrable, with mean �

i

= EX

i

and variane �

2

i

= E[(X

i

��

i

)

2

℄, then S

n

is

square integrable too with mean ES

n

= �

�n

:=

P

i�n

�

i

and variane VS

n

= �

2

�n

:=

P

i�n

�

2

i

.

But what about the atual probability distribution? If the X

i

have density funtions f

i

(x

i

)

then S

n

has a density funtion too; for example, with n = 2, S

2

= X

1

+X

2

has CDF F (s)

and pdf f(s) = F

0

(s) given by

P[S

2

� s℄ = F (s) =

ZZ

x

1

+x

2

�s

f

1

(x

1

)f

2

(x

2

) dx

1

dx

2

=

Z

1

�1

Z

s�x

2

�1

f

1

(x

1

)f

2

(x

2

) dx

1

dx

2

=

Z

1

�1

F

1

(s� x

2

)f

2

(x

2

) dx

2

=

Z

1

�1

F

2

(s� x

1

)f

1

(x

1

) dx

1

f(s) = F

0

(s) =

Z

1

�1

f

1

(s� x

2

)f

2

(x

2

) dx

2

=

Z

1

�1

f

1

(x

1

)f

2

(s� x

1

) dx

1

;

the onvolution f = f

1

? f

2

of f

1

(x

1

) and f

2

(x

2

). Even if the distributions aren't abso-

lutely ontinuous, so no pdfs exist, S

2

has a distribution measure � given by �(ds) =

R

R

�

1

(dx

1

)�

2

(ds�x

1

). There is an analogous formula for n = 3, but it is quite messy; things

get worse and worse as n inreases, so this is not a promising approah for studying the

distribution of sums S

n

for large n.

If CDFs and pdfs of sums of independent RVs are not simple, is there some other feature

of the distributions that is? The answer is Yes. What is simple about independent random

variables is alulating expetations of produts of the X

i

, or produts of any funtions of the

X

i

; the exponential funtion will let us turn the partial sums S

n

into produts e

S

n

=

Q

e

X

i

or, more generally, e

zS

n

=

Q

e

zX

i

for any real or omplex number z. Thus for independent

RVs X

i

and any number z we an use independene to ompute the expetation

Ee

zS

n

=

n

Y

i=1

Ee

zX

i

;

often alled the \moment generating funtion" and denoted M

X

(z) = Ee

zX

for any random

variable X.

For real z the funtion e

zX

beomes huge if X beomes very large (for positive z) or very

negative (if z < 0), so that even for integrable or square-integrable random variables X the

1
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expetationM(z) = Ee

zX

may be in�nite. Here are a few examples of Ee

zX

for some familiar

distributions (try to verify some of them):

Binomial: Bi(n; p) [1 + p(e

z

� 1)℄

n

z 2 C

Neg Bin: NB(�; p) [1� (p=q)(e

z

� 1)℄

��

z 2 C

Poisson Po(�) e

�(e

z

�1)

z 2 C

Normal: No(�; �

2

) e

z�+z

2

�

2

=2

z 2 C

Gamma: Ga(�; �) (1� z=�)

��

<(z) < �

Cauhy:

a

�(a

2

+(x�b)

2

)

e

zb�ajzj

<(z) = 0

Uniform: Un(a; b)

1

z(b�a)

�

e

zb

� e

za

�

z 2 C

Aside from the problem that M(z) = Ee

zX

may be in�nite or fail to exist for some z 2 C ,

the approah is promising: we an identify the probability distribution from M(z), and

we an even �nd important features about the distribution diretly from M . For example,

if we an justify interhanging the limits impliit in di�erentiation and integration, then

M

0

(z) = E[Xe

zX

℄ and M

00

(z) = E[X

2

e

zX

℄, so (upon taking z = 0) M

0

(0) = EX = � and

M

00

(0) = EX

2

= �

2

+ �

2

. This lets us alulate the mean and variane (and other moments

EX

k

= M

(k)

(0)) from derivatives of M(z) at zero. We have two problems to overome:

disovering how to infer the distribution of X from M

X

(z) = Ee

zX

, and what to do about

distributions for whih M(z) is in�nite or doesn't exist.

9.1 Charateristi Funtions

For omplex numbers z = x+ iy, Leonard Euler showed that the exponential e

z

an be given

in terms of familiar real-valued transendental funtions as e

x+iy

= e

x

os(y) + ie

x

sin(y).

Sine both sin(y) and os(y) are bounded by one, for any real-valued random variable X

and real number ! the real and imaginary parts of the omplex-valued random variable e

i!X

are bounded and hene integrable; thus it always makes sense to de�ne the harateristi

funtion

�

X

(!) = Ee

i!X

=

Z

R

e

i!x

�

X

(dx); ! 2 R

with �nite absolute value j�

X

(!)j � 1. Of ourse this is just �

X

(!) = M

X

(i!) when M

X

exists, but �

X

(!) exists even when M

X

does not; on the hart above you'll notie that only

the real part of z posed problems, and <(z) = 0 was always OK, even for the Cauhy. For

real-valued ! 2 R, some familiar distributions' h.f.s are:

Binomial: Bi(n; p) �(!) = [1 + p(e

i!

� 1)℄

n

Neg Bin: NB(�; p) �(!) = [1� (p=q)(e

i!

� 1)℄

��

Poisson Po(�) �(!) = e

�(e

i!

�1)

Normal: No(�; �

2

) �(!) = e

i!��!

2

�

2

=2

Gamma: Ga(�; �) �(!) = (1� i!=�)

��

Cauhy:

a=�

a

2

+(x�b)

2

�(!) = e

i!b�aj!j

Uniform: Un(a; b) �(!) =

1

i!(b�a)

�

e

i!b

� e

i!a

�
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9.1.1 Uniqueness

Suppose that two probability distributions �

1

(A) = P[X

1

2 A℄ and �

2

(A) = P[X

2

2 A℄ have

the same Fourier transform �̂

1

:= �̂

2

, where:

�̂

j

(!) = E[e

i!X

j

℄ =

Z

R

e

i!x

�

j

(dx);

does it follow that X

1

and X

2

have the same probability distributions, i.e., that �

1

= �

2

?

The answer is yes; in fat, one an reover the measure � expliitly from the funtion �̂(!).

Thus we regard uniqueness as a orollary of the muh stronger result, the Fourier Inversion

Theorem.

Resnik (1999) has lots of interesting results about harateristi funtions in Chapter 9,

Grimmett and Stirzaker (2001) disuss related results in their Chapter 5, and Billingsley

(1995) proves several versions of this theorem in his Setion 26. I'm going to take a di�erent

approah, and stress the two speial ases in whih � is disrete or has a density funtion,

trying to make some onnetions with other enounters you might have had with Fourier

transforms.

9.1.2 Positive De�niteness

Whih funtions �(!) an be harateristi funtions? We know that j�(!)j � 1 for every

! 2 R, and that �(0) = 1. In a homework exerise you showed that �(!) must be uniformly

ontinuous, too| is that enough?

The answer is no. Eah h.f. has the interesting property that it is \positive de�nite," in the

following sense:

De�nition 1 A funtion � : R ! C is positive de�nite if for every n 2 N, z 2 C

n

, and

! 2 R

n

,

n

X

j;k=1

z

j

�(!

j

� !

k

)�z

k

� 0

or, equivalently, that eah n� n matrix A

jk

:= �(!

j

� !

k

) is positive-de�nite.

Here's a proof that �(!) :=

R

R

e

i!x

�(dx) is positive de�nite, for every distribution � on
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(R;B), with the interhange of summation & integration justi�ed by Fubini's Theorem:

n

X

j;k=1

z

j

�(!

j

� !

k

)�z

k

=

n

X

j;k=1

Z

R

z

j

e

i x(!

j

�!

k

)

�(dx)�z

k

=

Z

R

(

n

X

j=1

z

j

e

i x!

j

)(

n

X

k=1

z

k

e

i x!

k

)

�(dx)

=

Z

R

�

�

�

�

�

n

X

j=1

z

j

e

i x!

j

�

�

�

�

�

2

�(dx)

� 0:

Interestingly, this ondition is also suÆient:

Theorem 1 (Bohner) If � : R ! C is ontinuous at zero, satis�es �(0) = 1, and is

positive de�nite, then there exists a Borel probability measure � on (R;B) suh that �(!) =

R

R

e

i!x

�(dx) for eah ! 2 R.

Here's a proof sketh for the speial (but ommon) ase where � 2 L

1

(R; d!). By positive

de�niteness, for any f!

j

g � R and fz

j

g � C ,

0 �

X

z

j

�(!

j

� !

k

)�z

k

and in partiular, for x 2 R, � > 0, and z

j

:= exp(�ix!

j

� �!

2

j

=2),

0 �

X

e

�ix(!

j

�!

k

)��(!

2

j

+!

2

k

)=2

�(!

j

� !

k

):

Taking !

j

:= (j � n

2

)=n for 0 � j � 2n

2

and then taking the limit as n!1,

0 �

ZZ

R

2

e

�ix(u�v)��(u

2

+v

2

)=2

�(u� v) du dv

Now hange variables from v to ! := (u� v):

=

ZZ

R

2

e

�ix!��[u

2

+(u

2

�2u!+!

2

)℄=2

�(!) du d!

=

Z

R

e

�ix!��!

2

=2

�

Z

R

e

��(u�!=2)

2

+!

2

=4

du

�

�(!) d!

=

p

�=�

Z

R

e

�ix!��!

2

=4

�(!) d!

Re-saling and then taking � ! 0, we �nd that f(x) :=

1

2�

R

R

e

�ix!

�(!) d! � 0 for every

x 2 R and an verify that �(!) =

R

R

e

i!x

�(dx) for the absolutely-ontinuous distribution

given by �(dx) = f(x) dx.
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9.1.3 Inversion: Integer-valued Disrete Case

Notie that the integer-valued disrete distributions always satisfy �(! + 2�) = �(!) (and

in partiular are not integrable over R), while the ontinuous ones satisfy j�(!)j ! 0 as

! ! �1. For integer-valued random variables X we an reover the probability mass

funtion p

k

:= P[X = k℄ by inverting the Fourier series:

�(!) = E[e

i!X

℄ =

X

p

k

e

ik!

; so (by Fubini's thm)

p

k

=

1

2�

Z

�

��

e

�ik!

�(!) d!:

9.1.4 Inversion: Continuous Random Variables

Now let's turn to the ase of a distribution with a density funtion; �rst two preliminaries.

For any real or omplex numbers a, b,  it is easy to ompute (by ompleting the square)

that

Z

1

�1

e

�a�bx�x

2

dx =

r

�



e

�a+b

2

=4

(1)

if  has positive real part, and otherwise the integral is in�nite. In partiular, for any � > 0

the funtion 

�

(x) :=

1

p

2��

e

�x

2

=2�

satis�es

R



�

(x) dx = 1 (it's just the normal pdf with mean

0 and variane �).

Let �(dx) = f(x)dx be any probability distribution with density funtion f(x) and h.f.

�(!) = �̂(!) =

R

e

i!x

f(x) dx. Then j�(!)j � 1 so for any � > 0 the funtion je

�iy!��!

2

=2

�(!)j

is bounded above by e

��!

2

=2

and so is integrable w.r.t. ! over R. We an ompute

1

2�

Z

R

e

�iy!��!

2

=2

�(!) d! =

1

2�

Z

R

e

�iy!��!

2

=2

�

Z

R

e

ix!

f(x) dx

�

d!

=

1

2�

Z

R

2

e

i(x�y)!��!

2

=2

f(x) dx d!

=

1

2�

Z

R

�

Z

R

e

i(x�y)!��!

2

=2

d!

�

f(x) dx (2)

=

1

2�

Z

R

"

r

2�

�

e

�(x�y)

2

=2�

#

f(x) dx (3)

=

1

p

2��

Z

R

e

�(x�y)

2

=2�

f(x) dx

= [

�

? f ℄(y) = [

�

? �℄(y)

(where the interhange of orders of integration in (2) is justi�ed by Fubini's theorem and the

alulation in (3) by equation (1)), the onvolution of the normal kernel 

�

(�) with f(y). As

�! 0 this onverges
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� uniformly (and in L

1

) to f(y) if f(�) is bounded and ontinuous, the most ommon

ase;

� pointwise to

f(y�)+f(y+)

2

if f(x) has left and right limits at x = y; and

� to in�nity if �(fyg) > 0, i.e., if P[X = y℄ > 0.

This is the Fourier Inversion Formula for f(x): we an reover the density f(x) from its

Fourier transform �(!) = �̂(!) by f(x) =

1

2�

R

e

�i!x

�(!) d!, if that integral exists, or

otherwise as the limit

f(x) = lim

�!0

1

2�

Z

e

�i!x��!

2

=2

�(!) d!:

There are several interesting onnetions between the density funtion f(x) and harateristi

funtion �(!). If �(!) \wiggles" with rate approximately �, i.e., if �(!) � a os(!�) +

b sin(!�) + , then f(x) will have a spike at x = � and X will have a high probability of

being lose to �; if �(!) is very smooth (i.e., has well-behaved ontinuous derivatives of high

order) then it does not have high-frequeny wiggles and f(x) falls o� quikly for large jxj, so

E[jXj

p

℄ <1 for large p. If j�(!)j falls o� quikly as ! ! �1 then �(!) doesn't have large

low -frequeny omponents and f(x) must be rather tame, without any spikes. Thus � and

f both apture information about the distribution, but from di�erent perspetives. This is

often useful, for the vague desriptions of this paragraph an be made preise:

Theorem 2 If

R

R

j�̂(!)j d! <1 then �

�

:= � ? 

�

onverges a.s as �! 0 to an L

1

funtion

f(x), �̂

�

(!) :=

R

e

i!x

�

�

(dx) onverges uniformly to

^

f(!) :=

R

e

i!x

f(x) dx, and �(A) =

R

A

f(x) dx for eah Borel A � R. Also f(x) =

1

2�

R

R

e

�i!x

�̂(!) d! for almost-every x.

Theorem 3 For any distribution � and real numbers a < b,

�(a; b) +

1

2

�

�

fa; bg

�

= lim

T!1

Z

T

�T

e

�i!a

� e

�i!b

2�i!

�̂(!) d!:

Theorem 4 If

R

R

jxj

k

�(dx) <1 for an integer k � 0 then �̂(!) has ontinuous derivatives

of order k given by

�̂

(k)

(!) =

Z

R

(ix)

k

e

i!x

�(dx): (1)

Conversely, if �̂(!) has a derivative of �nite even order k at ! = 0, then

R

R

jxj

k

�(dx) <1

and

EX

k

=

Z

R

x

k

�(dx) = (�1)

k=2

�̂

(k)

(0): (2)
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To prove (1) �rst note it's true by de�nition for k = 0, then apply indution:

�̂

(k+1)

(!) = lim

�!0

Z

R

(ix)

k

�

e

i�x

� 1

�

�

e

i!x

�(dx)

=

Z

R

(ix)

k+1

e

i!x

�(dx)

by LDCT sine je

i�x

� 1j � �jxj.

By Theorem4 the �rst few moments of the distribution, if they exist, an be determined

from derivatives of the harateristi funtion or its logarithm log�(z) at z = 0: �(0) = 1,

�

0

(0) = iE[X℄, �

00

(0) = �E[X

2

℄, so

[log �℄ (0) = log �(0) = log 1 = 0

Mean: [log �℄

0

(0) = �

0

(0)=�(0) = iE[X℄ = i�

Variane: [log �℄

00

(0) =

�

00

(0)�(0)�(�

0

(0))

2

�(0)

2

= E[X℄

2

� E[X

2

℄ = ��

2

Et.: [log �℄

000

(0)= �iE[X

3

℄� 3�

2

�� �

3

� EjXj

3

for some  <1, so by Taylor's theorem we have:

1

log�(!) = 0 + i�! � �

2

!

2

=2 +O(!

3

) (3)

�(!) � e

i�!��

2

!

2

=2+O(!

3

)

9.1.5 Convergene in Distribution

In the Week 6 Notes we de�ned onvergene in distribution of a sequene of distributions

f�

n

g to a limiting distribution � on a measurable spae (X ; E) (written �

n

) �):

�

8� 2 C

b

(X )

�

lim

n!1

Z

X

�(x)�

n

(dx) =

Z

X

�(x)�(dx) (4)

In fat requiring this onvergene for all bounded ontinuous funtions � is more than what

is neessary. For X = R

d

, for example, it is enough to verify (4) for in�nitely-di�erentiable

C

1

b

, or even just for omplex exponentials �

!

(x) = exp(i!

0

x) for ! 2 R

d

, i.e.,

Theorem 5 Let f�

n

(dx)g and �(dx) be distributions on Eulidean spae (R

d

;B). Then

�

n

) � if and only if the harateristi funtions onverge pointwise, i.e., if

�

n

(!) :=

Z

R

d

e

i!

0

x

�

n

(dx)! �(!) :=

Z

R

d

e

i!

0

x

�(dx) (5)

for all ! 2 R

d

.

How would you prove this?

1

The \big oh" notation \f = O(g) at a" means that for some M < 1 and � > 0, jf(x)j � Mg(x)

whenever jx� aj < �| roughly, that lim sup

x!a

jf(x)=g(x)j <1. Here (impliitly) a = 0.
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Examples

Un: Let X

n

have the disrete uniform distribution on the points j=n, for 1 � j � n. Then

its h.f. is

�

n

(!) =

1

n

n

X

j=1

e

i!j=n

=

e

i!=n

� e

i(n+1)!=n

n(1� e

i!=n

)

=

1� e

i!

n(e

�i!=n

� 1)

!

1� e

i!

�i!

=

e

i!

� 1

i!

=

Z

1

0

e

i!x

dx;

the h.f. of the Un(0; 1) distribution.

Po: Let X

n

have Binomial Bi(n; p

n

) distributions with suess probabilities p

n

� �=n, so

that n p

n

! � for some � > 0 as n!1. Then the h.f.s satisfy

�

n

(!) =

n

X

k=0

�

n

k

�

e

i!k

p

k

n

(1� p

n

)

n�k

=

�

1 + p

n

(e

i!

� 1)

�

n

! e

(e

i!

�1)�

;

the h.f. of the Po(�) distribution. This is an example of a \law of small numbers".

No: Let X

n

have Binomial Bi(n; p

n

) distributions with suess probabilities p

n

suh that

�

2

n

:= n p

n

(1 � p

n

) ! 1 as n ! 1, and set �

n

:= np

n

. Then the h.f.s of Z

n

:=

(X

n

� �

n

)=�

n

satisfy

�

n

(!) =

�

1 + p

n

(e

i!=�

n

� 1)

�

n

e

�i!�

n

=�

n

� exp

�

�

n

(e

i!=�

n

� 1)� p

n

�

n

(e

i!=�

n

� 1)

2

=2� i!�

n

=�

n

	

� exp

�

i�

n

!=�

n

� �

n

!

2

=2�

2

n

� p

n

�

n

(�!

2

=�

2

n

)=2� i!�

n

=�

n

	

! e

�!

2

=2

;

the h.f. of the No(0; 1) distribution. This result is alled the \DeMoivre-Laplae"

theorem, a pre-ursor (and speial ase) of the Central Limit Theorem.

9.2 Limits of Partial Sums and the Central Limit Theorem

Let fX

i

g be iid and L

2

, with ommon mean � and variane �

2

, and set S

n

:=

P

n

i=1

X

i

for

n 2 N . We'll need to enter and sale the distribution of S

n

before we an hope to make

sense of S

n

's distribution for large n, so we'll need some fats about harateristi funtions
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of linear ombinations of independent RVs. For independent X and Y , and real numbers �,

�, ,

�

�+�X+Y

(!) = Ee

i!(�+�X+Y )

= Ee

i!�

Ee

i!�X

Ee

i!Y

= e

i!�

�

X

(!�)�

Y

(!):

In partiular, for iid L

3

random variables fX

i

g with harateristi funtion �(t), the nor-

malized sum [S

n

� n�℄=

p

n�

2

has harateristi funtion

�

n

(!) =

n

Y

j=1

h

�

�

!=

p

n�

2

�

e

�i!�=

p

n�

2

i

Setting s := !=

p

n�

2

, this is

=

�

�(s)e

�is�

�

n

= e

n[log �(s)�is�℄

with logarithm

log�

n

(!) = n

�

log�(s)� is�

�

= n

�

0 + i�s� �

2

s

2

=2 +O(s

3

)

�

� nis� (by (3))

= �n

�

�

2

(!

2

=n�

2

)=2 +O(n

�3=2

)

�

(sine s

2

= !

2

=n�

2

)

= �!

2

=2 +O(n

�1=2

);

so �

n

(!) ! e

�!

2

=2

for all ! 2 R and hene Z

n

:= [S

n

� n�℄=

p

n�

2

) No(0; 1), the Central

Limit Theorem.

Note: We assumed X

i

were iid with �nite third moment  := EjX

i

j

3

<1. Under those on-

ditions one an prove the uniform \Berry-Ess�een" bound sup

x

jF

n

(x)� �(x)j � =

�

2�

3

p

n

�

for the CDF F

n

of Z

n

. Another version of the CLT for iid fX

i

g asserts weak onvergene of

Z

n

to No(0; 1) assuming only E[X

2

i

℄ <1 (i.e., no L

3

requirement), but this version gives no

bound on the di�erene of the CDFs. Another famous version, due to Lindeberg and Feller,

asserts that

S

n

s

n

=) No(0; 1)

for partial sums S

n

= X

1

+ � � �+X

n

of independent mean-zero L

2

random variables X

j

that

need not be identially distributed, but whose varianes �

2

j

= V[X

j

℄ aren't too extreme. The

spei� ondition, for s

2

n

:= �

2

1

+ � � �+ �

2

n

, is

1

s

2

n

n

X

j=1

E

�

X

2

j

1

fjX

j

j>ts

n

g

	

! 0
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as n ! 1 for eah t > 0. This follows immediately for iid fX

j

g � L

2

(where it beomes

1

�

2

E

�

jX

1

j

2

1

fjX

1

j

2

>nt

2

�

2

g

�

whih tends to zero as n ! 1 by the DCT), but for appliations

it's important to know that independent but non-iid summands still lead to a CLT.

This \Lindeberg Condition" implies both of

max

j�n

�

2

j

s

2

n

! 0 max

j�n

P fjX

j

j=s

n

> �g ! 0

as n ! 1, for any � > 0; roughly, no single X

j

is allowed to dominate the sum S

n

. This

ondition follows from the easier-to-verify Liapunov Condition, (9Æ > 0) s.t.:

s

�2�Æ

n

n

X

j=1

EjX

j

j

2+Æ

! 0 as n!1:

Other versions of the CLT apply to non-identially distributed or nonindependent fX

j

g, but

S

n

annot onverge to a normally-distributed limit if E[X

2

℄ = 1; ask for details (or read

Gnedenko and Kolmogorov (1968)) if you're interested.

More reently an interesting new approah to proving the Central Limit Theorem and related

estimates with error bounds was developed by Charles Stein (Stein, 1972, 1986; Barbour and

Chen, 2005), desribed later in these notes.

9.3 Failure of Central Limit Theorem

The CLT only applies to square-integrable random variables fX

j

g � L

2

. Some ontemporary

statistial work, both theoretial and applied, entails heavier-tailed distributions that do not

have a �nite variane (or, often, even a �nite mean). In these ases, sums and averages of

independent random variables do not have have approximate normal distributions, and may

not even be onentrated around a entral value.

For example, if fX

i

g

iid

� Ca(m; s) are IID Cauhy random variables with pdf and h.f.

f(x) =

s=�

s

2

+ (x�m)

2

�(!) = exp

�

im! � sj!j

�

then the sample mean

�

X

n

� Ca(m; s) also has the same Cauhy distribution| and, in

partiular, no weak or strong LLN applies and no CLT applies.

Worse| if f�

i

g

iid

� No(0; 1) are IID standard Normals, then the random variables X

i

:=

1=�

i

j�

i

j have the symmetri �-stable St(

1

2

; 0; 1; 0) distribution with h.f. �

1

(!) := exp(�j!j

1=2

),

so the sample average

�

X

n

has h.f.

�

n

(!) =

h

�

1

(!=n)

i

n

= exp

�

� jn!j

1=2

�

;

the same distribution as nX

1

. The average of several independent repliates has a muh

wider distribution than the individual terms.

Heavy-tailed distributions like the Fr�ehet, �-Stable, and Pareto arise when modeling inome

distribution, weather extremes, volani ows, and many other phenomena.
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10 Distributional Limits of Heavy-Tailed Sums

Although one annot expet

�

X

n

to have an approximate normal distribution for fX

i

g 6� L

2

,

other distributional limit theorems may still apply. Before we introdue those, we introdue

some tools useful for studying heavy-tailed distributions.

10.1 Compound Poisson Distributions

Let X

j

have independent Poisson distributions with means �

j

and let u

j

2 R; then the h.f.

for Y :=

P

u

j

X

j

is

�

Y

(!) =

Y

exp

�

�

j

(e

i!u

j

� 1)

�

= exp

h

X

(e

i!u

j

� 1)�

j

i

= exp

h

Z

R

(e

i!u

� 1)�(du)

i

for the disrete measure �(du) =

P

�

j

Æ

u

j

(du) that assigns mass �

j

to eah point u

j

. Evidently

we ould take a limit using a sequene of disrete measures that onverges to a ontinuous

measure �(du) so long as the integral makes sense, i.e.,

R

R

je

i!u

�1j�(du) <1; this will follow

from the requirement that

R

R

(1 ^ juj)�(du) < 1. Suh a distribution is alled Compound

Poisson, at least when �

+

:= �(R) < 1; in that ase we an also write represent it in the

form

Y =

N

X

i=1

X

i

; N � Po(�

+

); X

i

iid

� �(dx)=�

+

:

We'll now see that it inludes an astonishingly large set of distributions, eah with h.f. of

the form exp

� R

(e

i!u

� 1)�(du)

	

with \L�evy measure" �(du) as given:

Distribution Log Ch Funtion �(!) L�evy Measure �(du)

Poisson Po(�) �(e

i!

� 1) �Æ

1

(du)

Gamma: Ga(�; �) �� log(1�i!=�) �e

��u

u

�1

1

fu>0g

du

Normal: No(0; �

2

) �!

2

�

2

=2 �

1

2

�

2

Æ

00

0

(du)

Neg Bin: NB(�; p) �� log[1�

p

q

(e

i!

� 1)℄

P

1

k=1

�p

k

k

Æ

k

(du)

Cauhy: Ca(; 0) �j!j



�

u

�2

du

Stable: St

A

(�; �; ) �j!j

�

[1� i� tan

��

2

sgn(!)℄ 

�

[1 + � sgn u℄�juj

�1��

du;

where 

�

:=

1

�

�(�) sin

��

2

. Try to verify the measures �(du) for the Negative Binomial and

Cauhy distributions. All these distributions share the property alled in�nite divisibility

(\ID" for short), that for every integer n 2 N eah an be written as a sum of n independent
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identially distributed terms. In 1936 the Frenh probabilist Paul L�evy and Russian proba-

bilist Alexander Ya. Khinhine disovered that every distribution with this property must

have a h.f. of a very slightly more general form than that given above,

log �(!) = ia! �

�

2

2

!

2

+

Z

R

�

e

i!u

� 1� i! h(u)

�

�(du);

where a 2 R and � 2 R

+

are onstants and where h(u) is any bounded Borel funtion

that ats like u for u lose to zero (for example, h(u) = artan(u) or h(u) = sin(u) or

h(u) = u=(1 + u

2

)). The measure �(du) need not quite be �nite, but we must have u

2

integrable near zero and 1 integrable away from zero... one way to write this is to require

that

R

(1 ^ u

2

) �(du) < 1, another is to require

R

u

2

1+u

2

�(du) < 1. Some authors onsider

the �nite measure �(du) =

u

2

1+u

2

�(du) and write

log �(!) = ia! +

Z

R

�

e

i!u

� 1� i! h(u)

�

1 + u

2

u

2

�(du);

where now the Gaussian omponent

��

2

!

2

2

arises from a point mass for �(du) of size �

2

at

u = 0.

If u is loally integrable, i.e., if

R

�

��

juj �(du) < 1 for some (and hene every) � > 0, then

the term \�i! h(u)" is unneessary (it an be absorbed into ia!). This always happens if

�(R

�

) = 0, i.e., if � is onentrated on the positive half-line. Every inreasing stationary

independent-inrement stohasti proess X

t

(or subordinator) has inrements whih are

in�nitely divisible with � onentrated on the positive half-line and no Gaussian omponent

(�

2

= 0), so has the representation

log�(!) = ia! +

Z

1

0

�

e

i!u

� 1

�

�(du)

for some a � 0 and some measure � on R

+

with

R

1

0

(1 ^ u) �(du) < 1. In the ompound

Poisson example, �(du) =

P

�

j

Æ

u

j

(du) was the sum of point masses of size �

j

at the possible

jump magnitudes u

j

. This interpretation extends to help us understand all ID distributions:

every ID random variable X may be viewed as the sum of a onstant, a Gaussian random

variable, and a ompound Poisson random variable, the sum of independent Poisson jumps

of sizes u 2 E � R with rates �(E).

10.2 Stable Limit Laws

Let S

n

= X

1

+� � �+X

n

be the partial sum of iid random variables. IF the random variables are

all square integrable, THEN the Central Limit Theorem applies and neessarily

S

n

�n�

p

n�

2

=)

No(0; 1). But what if eah X

n

is not square integrable? We have already seen that the CLT

fails for Cauhy variables X

j

. Denote by F (x) = P[X

n

� x℄ the ommon CDF of the fX

n

g.
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Theorem 6 (Stable Limit Law) Let S

n

=

P

j�n

X

j

be the sum of iid random variables.

There exist onstants A

n

> 0 and B

n

2 R and a non-trivial distribution G for whih the

saled and entered partial sums onverge in distribution

S

n

�B

n

A

n

=) G

to a non-trivial limit G if and only if fX

j

g � L

2

(in whih ase A

n

�

p

n, B

n

= n�+O(

p

n),

and G = No

�

�; �

2

) is the Normal distribution) or there are onstants 0 < � < 2, M

�

� 0,

and M

+

� 0, with M

�

+M

+

> 0, suh that as x ! 1 the following limits hold for every

� > 0:

M

+

= lim

x!1

x

�

[1� F (x)℄ and, if M

+

> 0,

1� F (x�)

1� F (x)

! �

��

(6)

M

�

= lim

x!1

x

�

[F (�x)℄ and, if M

�

> 0,

F (�x�)

F (�x)

! �

��

In this ase the limit is the �-Stable Distribution, with index �, with harateristi

funtion

E

�

e

i!Y

�

= exp

�

iÆ! � j!j

�

�

1� i� tan

��

2

sgn(!)

�	

(7a)

in the St

A

parametrization, where � =

M

+

�M

�

M

�

+M

+

,  = (M

�

+M

+

), and Æ 2 R is arbitrary.

The sequenes A

n

, B

n

must be (see Setion (10.5))

A

n

=

�

L

A

n

�

n

1=�

B

n

=

(

�

L

B

n

��

� tan

��

2

� Æ

��

n

1=�

� n

�

� 6= 1

�

L

B

n

�

2�

�

n logn � = 1

(8)

for onstants or sequenes L

A

n

;L

B

n

that, like (logn)

p

for any power p 2 R but not like n

p

for

any p 6= 0, are \slowly varying" in the sense that

lim

n!1

L

n

L

n

= 1

for every  > 0. Don't get mesmerized by this| think of the L

n

s as proportionality onstants.

For � 2 (1; 2) the sample means onverge at rate n

(1��)=�

to EY , more slowly (muh more

slowly, if � is lose to one) than in the L

2

ase where the entral limit theorem applies and

�

X

n

! � at rate n

�1=2

. No means exist for � � 1. The limits in (6) above are equivalent

to the requirement that F (x) / jxj

��

L

�

(x) as x ! �1 and (1 � F (x)) / x

��

L

+

(x) as

x ! +1 for slowly varying funtions L

�

| roughly, that F (�x) and 1 � F (x) are both

/ x

��

(or zero) as x!1, i.e., that the pdf falls o� like jxj

���1

in both diretions.
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The simplest ase is the symmetri �-stable (S�S). For 0 < � � 2 and 0 <  < 1, the

St(�; 0; ; 0) has h.f.

�(!) = e

�j!j

�

This inludes the entered Cauhy Ca(0; s) (with � = 1,  = s) and the entered Normal

No(0; �

2

) (with � = 2,  = �

2

=2). The S�S family interpolates between these (for 1 < � < 2)

and extends them (for 0 < � < 1) to distributions with even heavier tails.

Although eah Stable distribution has an absolutely ontinuous distribution with ontinuous

unimodal probability density funtion f(y), these two ases and the \inverse Gaussian" or

\L�evy" distribution with � = 1=2 and � = �1 are the only ones whose pdf is available in

losed form. Perhaps that's the reason these are less studied than normal distributions; still,

they are very useful for problems with \heavy tails", i.e., where P[X > u℄ does not die o�

quikly with inreasing u. The symmetri (S�S) ones all have bell-shaped pdfs.

Moments are easy enough to ompute but, for � < 2, moments EjXj

p

are only �nite for

p < �. In partiular, means only exist for � > 1 and none of them has a �nite variane.

The Cauhy has �nite moments of order p < 1, but (despite its symmetry) does not have a

well-de�ned mean.

Equation (6) says that eah tail must be fall o� like a power (sometimes alled Pareto tails),

and the powers must be idential; it also gives the tail ratio. A ommon speial ase is

M

�

= 0 (or equivalently � = 1) , the \one-sided" or \fully skewed" Stable. For 0 < � < 1

these take only values in [Æ;1) (R

+

if Æ = 0). For example, random variables X

n

with

the Pareto distribution (often used to model inome) given by P[X

n

> t℄ = (1 + t=k)

��

for

t 2 R

+

and some � > 0; k > 0 will have a stable limit for their partial sums if � < 2, and

(by CLT) a normal limit if � � 2. There are lose onnetions between the theory of Stable

random variables and the more general theory of statistial extremes. Ask me for referenes

if you'd like to learn more about this exiting area.

Expression (7a) for the �-stable h.f. (alled the \A-parametrization" St

A

(�; �; ; Æ) by Zolo-

tarev (1986)) behaves badly as � ! 1 if � 6= 0, beause the tangent funtion has a pole at

�=2| so, for � > 0, the imaginary part of logE

�

e

i!Y

�

onverges to +1 as � % 1 and to

�1 as �& 1 (the signs reverse for � < 0). For � � 1 the omplex part of the log h.f. is:

=

�

logE[e

i!Y

℄

	

= iÆ! + i� tan

��

2

j!j

�

sgn(!)

= iÆ! + i� tan

��

2

j!j

��1

!

= i!

�

Æ + � tan

��

2

�

� i� tan

��

2

!

�

1� j!j

��1

�

where the last term is bounded as �! 1, so (following V. M. Zolotarev, 1986) the �-stable

is often parametrized di�erently in the \M -parametrization" St

M

(�; �; ; Æ) as

E[e

i!Y

℄ = exp

�

�j!j

�

+ iÆ

�

! � i� tan

��

2

!

�

1� j!j

��1

�	

(9)

for � 6= 1 with shifted \drift" term Æ

�

= Æ+ � tan(��=2). You an �nd out more details by

asking me or reading Breiman (1968, Chapter 9).
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10.3 Examples

Let fU

n

g

iid

� Un(0; 1), and set X

n

:= 1=U

n

. How would you desribe the distribution of

S

n

:=

P

j�n

X

j

, or of

�

X

n

:=

1

n

S

n

? Evidently EX

n

=

R

1

0

1

u

du =1, so

1

n

S

n

!1 a.s.; to get

any interesting limit we will have to resale or reenter or both.

By Theorem6, there exist sequenes fA

n

g, fB

n

g suh that (S

n

� B

n

)=A

n

) G for a non-

trivial distribution G if and only if X

n

2 L

2

(whih fails in this ase) or if the CDF

F (z) = P[X

n

� z℄ = P[U

n

� 1=z℄ =

(

1� 1=z z > 1

0 z � 1

satis�es for some 0 < � < 2 the onditions M

+

= lim

x!1

x

�

[1 � F (x)℄ � 0, M

�

=

lim

x!1

x

�

[F (�x)℄ � 0, (M

�

+M

+

) > 0 and, if M

+

> 0,

1� F (x�)

1� F (x)

=

1=x�

1=x

! �

��

:

Evidently the onditions hold for � = 1, M

�

= 0, and M

+

= 1, so � =M

+

=(M

�

+M

+

) = 1

and  = (M

�

+M

+

) = 1. By (8), with � = � =  = 1, suitable sequenes are given by

A

n

= n and B

n

=

2

�

n logn, so

S

n

�

2

�

n log n

n

=

S

n

n

�

2

�

log n � St

M

(� = 1; � = 1;  = 1; Æ = 0);

or

S

n

n

� St

M

(� = 1; � = 1;  = 1; Æ =

2

�

logn):

Sample averages

�

X

n

of X

j

:= (1=U

j

) will grow to in�nity at approximate rate (2=�) logn,

and

�

X

n

� (2=�) logn will have an asymptoti St

M

(1; 1; 1; 0) distribution. What do you think

happens to

�

X

n

for X

n

:= U

�1=�

n

for other values of � > 0?

10.4 Key Idea of the Stable Limit Laws

The stable limit law of Theorem6 says that if there exist nonrandom sequenes A

n

> 0 and

B

n

2 R and a nondegenerate distribution G suh that the partial sums S

n

:=

P

j�n

X

j

of

iid random variables fX

j

g satisfy

S

n

�B

n

A

n

=) G (10)

then Gmust be either the normal distribution or an �-stable distribution for some 0 < � < 2.

The key idea behind the theorem is that if a distribution � with df G satis�es (10) then

also for any n the distribution of the sum S

n

of n independent random variables with df G
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must also (after suitable shift and sale hanges) have df G| i.e., that 

n

S

n

+ d

n

� G for

some onstants 

n

> 0 and d

n

2 R, so the harateristi funtion �(!) :=

R

e

i!x

G(dx) and

log h.f.  (!) := log�(!) must satisfy

�(!) = E exp fi!(

n

S

n

+ d

n

)g

= exp(i!d

n

) �(!

n

)

n

 (!) = i!d

n

+ n (

n

!) (11)

whose only solutions are the normal and �-stable distributions. Here's a sketh of the proof

for the symmetri (S�S) ase, where  (�!) =  (!) and so d

n

= 0. Set  := � (1) and

note that (11) with ! = 

k

n

for k = 0; 1; : : : implies suessively:

 (

n

) =

�

n

 (

2

n

) =  (

n

)

1

n

=

�

n

2

: : :  (

k

n

) =

�

n

k

:

Results from omplex analysis imply this must hold for all k � 0, not just integers. Thus,

with jwj = 

k

n

and k = log jwj= log 

n

,

 (w) = �n

�k

= � exp f�(log jwj)(logn)=(log 

n

)g

= �jwj

�(log n)=(log 

n

)

= �jwj

�

;

where � is the onstant value of

� log n

log 

n

. It follows that 

n

= n

�1=�

(i.e., S

n

=n

1=�

� G) and

that �(!) = e

�j!j

�

, the h.f. for S�S for 0 < � < 2 and for No(0; 2) for � = 2.

10.5 The onstants A

n

and B

n

Here we show where the onstants given in (8) ome from. Let �(!) be the h.f. of iid random

variables Y

i

� St

M

(�; �; ; Æ) (given in (9)), and let  (!) := log �(!) be its logarithm. For

the partial sums S

n

:=

P

n

j=1

Y

j

to have the property that (S

n

�B

n

)=A

n

� St

M

(�; �; ; Æ) has

the same distribution as Y

j

for eah n, we need

 (!) = �j!j

�

+ iÆ

�

! � i� tan

��

2

!

�

1� j!j

��1

�

= n (!=A

n

)� i!B

n

=A

n

= �

h

n

A

n

�

i

j!j

�

+ i!

n

A

n

�

Æ

�

� � tan

��

2

� B

n

=n

	

(12)

+

h

n

A

n

�

i

i� tan

��

2

!j!j

��1

:

From the real part of (12) we �nd A

n

= n

1=�

, and from the imaginary part we �nd B

n

=

�

� tan

��

2

� Æ

��

n

1=�

� n

�

for � 6= 1. Find the value of B

n

for � = 1 as a limit.
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