
STA 711: Probability & Measure Theory

Robert L. Wolpert

9 Sums of Independent Random Variables

We 
ontinue our study of sums of independent random variables, S

n

= X

1

+ � � � + X

n

. If

ea
h X

i

is square-integrable, with mean �

i

= EX

i

and varian
e �

2

i

= E[(X

i

��

i

)

2

℄, then S

n

is

square integrable too with mean ES

n

= �

�n

:=

P

i�n

�

i

and varian
e VS

n

= �

2

�n

:=

P

i�n

�

2

i

.

But what about the a
tual probability distribution? If the X

i

have density fun
tions f

i

(x

i

)

then S

n

has a density fun
tion too; for example, with n = 2, S

2

= X

1

+X

2

has CDF F (s)

and pdf f(s) = F

0

(s) given by

P[S

2

� s℄ = F (s) =

ZZ

x

1

+x

2

�s

f

1

(x

1

)f

2

(x

2

) dx

1

dx

2

=

Z

1

�1

Z

s�x

2

�1

f

1

(x

1

)f

2

(x

2

) dx

1

dx

2

=

Z

1

�1

F

1

(s� x

2

)f

2

(x

2

) dx

2

=

Z

1

�1

F

2

(s� x

1

)f

1

(x

1

) dx

1

f(s) = F

0

(s) =

Z

1

�1

f

1

(s� x

2

)f

2

(x

2

) dx

2

=

Z

1

�1

f

1

(x

1

)f

2

(s� x

1

) dx

1

;

the 
onvolution f = f

1

? f

2

of f

1

(x

1

) and f

2

(x

2

). Even if the distributions aren't abso-

lutely 
ontinuous, so no pdfs exist, S

2

has a distribution measure � given by �(ds) =

R

R

�

1

(dx

1

)�

2

(ds�x

1

). There is an analogous formula for n = 3, but it is quite messy; things

get worse and worse as n in
reases, so this is not a promising approa
h for studying the

distribution of sums S

n

for large n.

If CDFs and pdfs of sums of independent RVs are not simple, is there some other feature

of the distributions that is? The answer is Yes. What is simple about independent random

variables is 
al
ulating expe
tations of produ
ts of the X

i

, or produ
ts of any fun
tions of the

X

i

; the exponential fun
tion will let us turn the partial sums S

n

into produ
ts e

S

n

=

Q

e

X

i

or, more generally, e

zS

n

=

Q

e

zX

i

for any real or 
omplex number z. Thus for independent

RVs X

i

and any number z we 
an use independen
e to 
ompute the expe
tation

Ee

zS

n

=

n

Y

i=1

Ee

zX

i

;

often 
alled the \moment generating fun
tion" and denoted M

X

(z) = Ee

zX

for any random

variable X.

For real z the fun
tion e

zX

be
omes huge if X be
omes very large (for positive z) or very

negative (if z < 0), so that even for integrable or square-integrable random variables X the

1
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expe
tationM(z) = Ee

zX

may be in�nite. Here are a few examples of Ee

zX

for some familiar

distributions (try to verify some of them):

Binomial: Bi(n; p) [1 + p(e

z

� 1)℄

n

z 2 C

Neg Bin: NB(�; p) [1� (p=q)(e

z

� 1)℄

��

z 2 C

Poisson Po(�) e

�(e

z

�1)

z 2 C

Normal: No(�; �

2

) e

z�+z

2

�

2

=2

z 2 C

Gamma: Ga(�; �) (1� z=�)

��

<(z) < �

Cau
hy:

a

�(a

2

+(x�b)

2

)

e

zb�ajzj

<(z) = 0

Uniform: Un(a; b)

1

z(b�a)

�

e

zb

� e

za

�

z 2 C

Aside from the problem that M(z) = Ee

zX

may be in�nite or fail to exist for some z 2 C ,

the approa
h is promising: we 
an identify the probability distribution from M(z), and

we 
an even �nd important features about the distribution dire
tly from M . For example,

if we 
an justify inter
hanging the limits impli
it in di�erentiation and integration, then

M

0

(z) = E[Xe

zX

℄ and M

00

(z) = E[X

2

e

zX

℄, so (upon taking z = 0) M

0

(0) = EX = � and

M

00

(0) = EX

2

= �

2

+ �

2

. This lets us 
al
ulate the mean and varian
e (and other moments

EX

k

= M

(k)

(0)) from derivatives of M(z) at zero. We have two problems to over
ome:

dis
overing how to infer the distribution of X from M

X

(z) = Ee

zX

, and what to do about

distributions for whi
h M(z) is in�nite or doesn't exist.

9.1 Chara
teristi
 Fun
tions

For 
omplex numbers z = x+ iy, Leonard Euler showed that the exponential e

z


an be given

in terms of familiar real-valued trans
endental fun
tions as e

x+iy

= e

x


os(y) + ie

x

sin(y).

Sin
e both sin(y) and 
os(y) are bounded by one, for any real-valued random variable X

and real number ! the real and imaginary parts of the 
omplex-valued random variable e

i!X

are bounded and hen
e integrable; thus it always makes sense to de�ne the 
hara
teristi


fun
tion

�

X

(!) = Ee

i!X

=

Z

R

e

i!x

�

X

(dx); ! 2 R

with �nite absolute value j�

X

(!)j � 1. Of 
ourse this is just �

X

(!) = M

X

(i!) when M

X

exists, but �

X

(!) exists even when M

X

does not; on the 
hart above you'll noti
e that only

the real part of z posed problems, and <(z) = 0 was always OK, even for the Cau
hy. For

real-valued ! 2 R, some familiar distributions' 
h.f.s are:

Binomial: Bi(n; p) �(!) = [1 + p(e

i!

� 1)℄

n

Neg Bin: NB(�; p) �(!) = [1� (p=q)(e

i!

� 1)℄

��

Poisson Po(�) �(!) = e

�(e

i!

�1)

Normal: No(�; �

2

) �(!) = e

i!��!

2

�

2

=2

Gamma: Ga(�; �) �(!) = (1� i!=�)

��

Cau
hy:

a=�

a

2

+(x�b)

2

�(!) = e

i!b�aj!j

Uniform: Un(a; b) �(!) =

1

i!(b�a)

�

e

i!b

� e

i!a

�
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9.1.1 Uniqueness

Suppose that two probability distributions �

1

(A) = P[X

1

2 A℄ and �

2

(A) = P[X

2

2 A℄ have

the same Fourier transform �̂

1

:= �̂

2

, where:

�̂

j

(!) = E[e

i!X

j

℄ =

Z

R

e

i!x

�

j

(dx);

does it follow that X

1

and X

2

have the same probability distributions, i.e., that �

1

= �

2

?

The answer is yes; in fa
t, one 
an re
over the measure � expli
itly from the fun
tion �̂(!).

Thus we regard uniqueness as a 
orollary of the mu
h stronger result, the Fourier Inversion

Theorem.

Resni
k (1999) has lots of interesting results about 
hara
teristi
 fun
tions in Chapter 9,

Grimmett and Stirzaker (2001) dis
uss related results in their Chapter 5, and Billingsley

(1995) proves several versions of this theorem in his Se
tion 26. I'm going to take a di�erent

approa
h, and stress the two spe
ial 
ases in whi
h � is dis
rete or has a density fun
tion,

trying to make some 
onne
tions with other en
ounters you might have had with Fourier

transforms.

9.1.2 Positive De�niteness

Whi
h fun
tions �(!) 
an be 
hara
teristi
 fun
tions? We know that j�(!)j � 1 for every

! 2 R, and that �(0) = 1. In a homework exer
ise you showed that �(!) must be uniformly


ontinuous, too| is that enough?

The answer is no. Ea
h 
h.f. has the interesting property that it is \positive de�nite," in the

following sense:

De�nition 1 A fun
tion � : R ! C is positive de�nite if for every n 2 N, z 2 C

n

, and

! 2 R

n

,

n

X

j;k=1

z

j

�(!

j

� !

k

)�z

k

� 0

or, equivalently, that ea
h n� n matrix A

jk

:= �(!

j

� !

k

) is positive-de�nite.

Here's a proof that �(!) :=

R

R

e

i!x

�(dx) is positive de�nite, for every distribution � on

Page 3Page 3Page 3
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(R;B), with the inter
hange of summation & integration justi�ed by Fubini's Theorem:

n

X

j;k=1

z

j

�(!

j

� !

k

)�z

k

=

n

X

j;k=1

Z

R

z

j

e

i x(!

j

�!

k

)

�(dx)�z

k

=

Z

R

(

n

X

j=1

z

j

e

i x!

j

)(

n

X

k=1

z

k

e

i x!

k

)

�(dx)

=

Z

R

�

�

�

�

�

n

X

j=1

z

j

e

i x!

j

�

�

�

�

�

2

�(dx)

� 0:

Interestingly, this 
ondition is also suÆ
ient:

Theorem 1 (Bo
hner) If � : R ! C is 
ontinuous at zero, satis�es �(0) = 1, and is

positive de�nite, then there exists a Borel probability measure � on (R;B) su
h that �(!) =

R

R

e

i!x

�(dx) for ea
h ! 2 R.

Here's a proof sket
h for the spe
ial (but 
ommon) 
ase where � 2 L

1

(R; d!). By positive

de�niteness, for any f!

j

g � R and fz

j

g � C ,

0 �

X

z

j

�(!

j

� !

k

)�z

k

and in parti
ular, for x 2 R, � > 0, and z

j

:= exp(�ix!

j

� �!

2

j

=2),

0 �

X

e

�ix(!

j

�!

k

)��(!

2

j

+!

2

k

)=2

�(!

j

� !

k

):

Taking !

j

:= (j � n

2

)=n for 0 � j � 2n

2

and then taking the limit as n!1,

0 �

ZZ

R

2

e

�ix(u�v)��(u

2

+v

2

)=2

�(u� v) du dv

Now 
hange variables from v to ! := (u� v):

=

ZZ

R

2

e

�ix!��[u

2

+(u

2

�2u!+!

2

)℄=2

�(!) du d!

=

Z

R

e

�ix!��!

2

=2

�

Z

R

e

��(u�!=2)

2

+!

2

=4

du

�

�(!) d!

=

p

�=�

Z

R

e

�ix!��!

2

=4

�(!) d!

Re-s
aling and then taking � ! 0, we �nd that f(x) :=

1

2�

R

R

e

�ix!

�(!) d! � 0 for every

x 2 R and 
an verify that �(!) =

R

R

e

i!x

�(dx) for the absolutely-
ontinuous distribution

given by �(dx) = f(x) dx.
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9.1.3 Inversion: Integer-valued Dis
rete Case

Noti
e that the integer-valued dis
rete distributions always satisfy �(! + 2�) = �(!) (and

in parti
ular are not integrable over R), while the 
ontinuous ones satisfy j�(!)j ! 0 as

! ! �1. For integer-valued random variables X we 
an re
over the probability mass

fun
tion p

k

:= P[X = k℄ by inverting the Fourier series:

�(!) = E[e

i!X

℄ =

X

p

k

e

ik!

; so (by Fubini's thm)

p

k

=

1

2�

Z

�

��

e

�ik!

�(!) d!:

9.1.4 Inversion: Continuous Random Variables

Now let's turn to the 
ase of a distribution with a density fun
tion; �rst two preliminaries.

For any real or 
omplex numbers a, b, 
 it is easy to 
ompute (by 
ompleting the square)

that

Z

1

�1

e

�a�bx�
x

2

dx =

r

�




e

�a+b

2

=4


(1)

if 
 has positive real part, and otherwise the integral is in�nite. In parti
ular, for any � > 0

the fun
tion 


�

(x) :=

1

p

2��

e

�x

2

=2�

satis�es

R




�

(x) dx = 1 (it's just the normal pdf with mean

0 and varian
e �).

Let �(dx) = f(x)dx be any probability distribution with density fun
tion f(x) and 
h.f.

�(!) = �̂(!) =

R

e

i!x

f(x) dx. Then j�(!)j � 1 so for any � > 0 the fun
tion je

�iy!��!

2

=2

�(!)j

is bounded above by e

��!

2

=2

and so is integrable w.r.t. ! over R. We 
an 
ompute

1

2�

Z

R

e

�iy!��!

2

=2

�(!) d! =

1

2�

Z

R

e

�iy!��!

2

=2

�

Z

R

e

ix!

f(x) dx

�

d!

=

1

2�

Z

R

2

e

i(x�y)!��!

2

=2

f(x) dx d!

=

1

2�

Z

R

�

Z

R

e

i(x�y)!��!

2

=2

d!

�

f(x) dx (2)

=

1

2�

Z

R

"

r

2�

�

e

�(x�y)

2

=2�

#

f(x) dx (3)

=

1

p

2��

Z

R

e

�(x�y)

2

=2�

f(x) dx

= [


�

? f ℄(y) = [


�

? �℄(y)

(where the inter
hange of orders of integration in (2) is justi�ed by Fubini's theorem and the


al
ulation in (3) by equation (1)), the 
onvolution of the normal kernel 


�

(�) with f(y). As

�! 0 this 
onverges

Page 5Page 5Page 5
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� uniformly (and in L

1

) to f(y) if f(�) is bounded and 
ontinuous, the most 
ommon


ase;

� pointwise to

f(y�)+f(y+)

2

if f(x) has left and right limits at x = y; and

� to in�nity if �(fyg) > 0, i.e., if P[X = y℄ > 0.

This is the Fourier Inversion Formula for f(x): we 
an re
over the density f(x) from its

Fourier transform �(!) = �̂(!) by f(x) =

1

2�

R

e

�i!x

�(!) d!, if that integral exists, or

otherwise as the limit

f(x) = lim

�!0

1

2�

Z

e

�i!x��!

2

=2

�(!) d!:

There are several interesting 
onne
tions between the density fun
tion f(x) and 
hara
teristi


fun
tion �(!). If �(!) \wiggles" with rate approximately �, i.e., if �(!) � a 
os(!�) +

b sin(!�) + 
, then f(x) will have a spike at x = � and X will have a high probability of

being 
lose to �; if �(!) is very smooth (i.e., has well-behaved 
ontinuous derivatives of high

order) then it does not have high-frequen
y wiggles and f(x) falls o� qui
kly for large jxj, so

E[jXj

p

℄ <1 for large p. If j�(!)j falls o� qui
kly as ! ! �1 then �(!) doesn't have large

low -frequen
y 
omponents and f(x) must be rather tame, without any spikes. Thus � and

f both 
apture information about the distribution, but from di�erent perspe
tives. This is

often useful, for the vague des
riptions of this paragraph 
an be made pre
ise:

Theorem 2 If

R

R

j�̂(!)j d! <1 then �

�

:= � ? 


�


onverges a.s as �! 0 to an L

1

fun
tion

f(x), �̂

�

(!) :=

R

e

i!x

�

�

(dx) 
onverges uniformly to

^

f(!) :=

R

e

i!x

f(x) dx, and �(A) =

R

A

f(x) dx for ea
h Borel A � R. Also f(x) =

1

2�

R

R

e

�i!x

�̂(!) d! for almost-every x.

Theorem 3 For any distribution � and real numbers a < b,

�(a; b) +

1

2

�

�

fa; bg

�

= lim

T!1

Z

T

�T

e

�i!a

� e

�i!b

2�i!

�̂(!) d!:

Theorem 4 If

R

R

jxj

k

�(dx) <1 for an integer k � 0 then �̂(!) has 
ontinuous derivatives

of order k given by

�̂

(k)

(!) =

Z

R

(ix)

k

e

i!x

�(dx): (1)

Conversely, if �̂(!) has a derivative of �nite even order k at ! = 0, then

R

R

jxj

k

�(dx) <1

and

EX

k

=

Z

R

x

k

�(dx) = (�1)

k=2

�̂

(k)

(0): (2)

Page 6Page 6Page 6
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To prove (1) �rst note it's true by de�nition for k = 0, then apply indu
tion:

�̂

(k+1)

(!) = lim

�!0

Z

R

(ix)

k

�

e

i�x

� 1

�

�

e

i!x

�(dx)

=

Z

R

(ix)

k+1

e

i!x

�(dx)

by LDCT sin
e je

i�x

� 1j � �jxj.

By Theorem4 the �rst few moments of the distribution, if they exist, 
an be determined

from derivatives of the 
hara
teristi
 fun
tion or its logarithm log�(z) at z = 0: �(0) = 1,

�

0

(0) = iE[X℄, �

00

(0) = �E[X

2

℄, so

[log �℄ (0) = log �(0) = log 1 = 0

Mean: [log �℄

0

(0) = �

0

(0)=�(0) = iE[X℄ = i�

Varian
e: [log �℄

00

(0) =

�

00

(0)�(0)�(�

0

(0))

2

�(0)

2

= E[X℄

2

� E[X

2

℄ = ��

2

Et
.: [log �℄

000

(0)= �iE[X

3

℄� 3�

2

�� �

3

� 
EjXj

3

for some 
 <1, so by Taylor's theorem we have:

1

log�(!) = 0 + i�! � �

2

!

2

=2 +O(!

3

) (3)

�(!) � e

i�!��

2

!

2

=2+O(!

3

)

9.1.5 Convergen
e in Distribution

In the Week 6 Notes we de�ned 
onvergen
e in distribution of a sequen
e of distributions

f�

n

g to a limiting distribution � on a measurable spa
e (X ; E) (written �

n

) �):

�

8� 2 C

b

(X )

�

lim

n!1

Z

X

�(x)�

n

(dx) =

Z

X

�(x)�(dx) (4)

In fa
t requiring this 
onvergen
e for all bounded 
ontinuous fun
tions � is more than what

is ne
essary. For X = R

d

, for example, it is enough to verify (4) for in�nitely-di�erentiable

C

1

b

, or even just for 
omplex exponentials �

!

(x) = exp(i!

0

x) for ! 2 R

d

, i.e.,

Theorem 5 Let f�

n

(dx)g and �(dx) be distributions on Eu
lidean spa
e (R

d

;B). Then

�

n

) � if and only if the 
hara
teristi
 fun
tions 
onverge pointwise, i.e., if

�

n

(!) :=

Z

R

d

e

i!

0

x

�

n

(dx)! �(!) :=

Z

R

d

e

i!

0

x

�(dx) (5)

for all ! 2 R

d

.

How would you prove this?

1

The \big oh" notation \f = O(g) at a" means that for some M < 1 and � > 0, jf(x)j � Mg(x)

whenever jx� aj < �| roughly, that lim sup

x!a

jf(x)=g(x)j <1. Here (impli
itly) a = 0.
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Examples

Un: Let X

n

have the dis
rete uniform distribution on the points j=n, for 1 � j � n. Then

its 
h.f. is

�

n

(!) =

1

n

n

X

j=1

e

i!j=n

=

e

i!=n

� e

i(n+1)!=n

n(1� e

i!=n

)

=

1� e

i!

n(e

�i!=n

� 1)

!

1� e

i!

�i!

=

e

i!

� 1

i!

=

Z

1

0

e

i!x

dx;

the 
h.f. of the Un(0; 1) distribution.

Po: Let X

n

have Binomial Bi(n; p

n

) distributions with su

ess probabilities p

n

� �=n, so

that n p

n

! � for some � > 0 as n!1. Then the 
h.f.s satisfy

�

n

(!) =

n

X

k=0

�

n

k

�

e

i!k

p

k

n

(1� p

n

)

n�k

=

�

1 + p

n

(e

i!

� 1)

�

n

! e

(e

i!

�1)�

;

the 
h.f. of the Po(�) distribution. This is an example of a \law of small numbers".

No: Let X

n

have Binomial Bi(n; p

n

) distributions with su

ess probabilities p

n

su
h that

�

2

n

:= n p

n

(1 � p

n

) ! 1 as n ! 1, and set �

n

:= np

n

. Then the 
h.f.s of Z

n

:=

(X

n

� �

n

)=�

n

satisfy

�

n

(!) =

�

1 + p

n

(e

i!=�

n

� 1)

�

n

e

�i!�

n

=�

n

� exp

�

�

n

(e

i!=�

n

� 1)� p

n

�

n

(e

i!=�

n

� 1)

2

=2� i!�

n

=�

n

	

� exp

�

i�

n

!=�

n

� �

n

!

2

=2�

2

n

� p

n

�

n

(�!

2

=�

2

n

)=2� i!�

n

=�

n

	

! e

�!

2

=2

;

the 
h.f. of the No(0; 1) distribution. This result is 
alled the \DeMoivre-Lapla
e"

theorem, a pre-
ursor (and spe
ial 
ase) of the Central Limit Theorem.

9.2 Limits of Partial Sums and the Central Limit Theorem

Let fX

i

g be iid and L

2

, with 
ommon mean � and varian
e �

2

, and set S

n

:=

P

n

i=1

X

i

for

n 2 N . We'll need to 
enter and s
ale the distribution of S

n

before we 
an hope to make

sense of S

n

's distribution for large n, so we'll need some fa
ts about 
hara
teristi
 fun
tions

Page 8Page 8Page 8



STA 711 Week 9 R L WolpertSTA 711 Week 9 R L WolpertSTA 711 Week 9 R L Wolpert

of linear 
ombinations of independent RVs. For independent X and Y , and real numbers �,

�, 
,

�

�+�X+
Y

(!) = Ee

i!(�+�X+
Y )

= Ee

i!�

Ee

i!�X

Ee

i!
Y

= e

i!�

�

X

(!�)�

Y

(!
):

In parti
ular, for iid L

3

random variables fX

i

g with 
hara
teristi
 fun
tion �(t), the nor-

malized sum [S

n

� n�℄=

p

n�

2

has 
hara
teristi
 fun
tion

�

n

(!) =

n

Y

j=1

h

�

�

!=

p

n�

2

�

e

�i!�=

p

n�

2

i

Setting s := !=

p

n�

2

, this is

=

�

�(s)e

�is�

�

n

= e

n[log �(s)�is�℄

with logarithm

log�

n

(!) = n

�

log�(s)� is�

�

= n

�

0 + i�s� �

2

s

2

=2 +O(s

3

)

�

� nis� (by (3))

= �n

�

�

2

(!

2

=n�

2

)=2 +O(n

�3=2

)

�

(sin
e s

2

= !

2

=n�

2

)

= �!

2

=2 +O(n

�1=2

);

so �

n

(!) ! e

�!

2

=2

for all ! 2 R and hen
e Z

n

:= [S

n

� n�℄=

p

n�

2

) No(0; 1), the Central

Limit Theorem.

Note: We assumed X

i

were iid with �nite third moment 
 := EjX

i

j

3

<1. Under those 
on-

ditions one 
an prove the uniform \Berry-Ess�een" bound sup

x

jF

n

(x)� �(x)j � 
=

�

2�

3

p

n

�

for the CDF F

n

of Z

n

. Another version of the CLT for iid fX

i

g asserts weak 
onvergen
e of

Z

n

to No(0; 1) assuming only E[X

2

i

℄ <1 (i.e., no L

3

requirement), but this version gives no

bound on the di�eren
e of the CDFs. Another famous version, due to Lindeberg and Feller,

asserts that

S

n

s

n

=) No(0; 1)

for partial sums S

n

= X

1

+ � � �+X

n

of independent mean-zero L

2

random variables X

j

that

need not be identi
ally distributed, but whose varian
es �

2

j

= V[X

j

℄ aren't too extreme. The

spe
i�
 
ondition, for s

2

n

:= �

2

1

+ � � �+ �

2

n

, is

1

s

2

n

n

X

j=1

E

�

X

2

j

1

fjX

j

j>ts

n

g

	

! 0
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as n ! 1 for ea
h t > 0. This follows immediately for iid fX

j

g � L

2

(where it be
omes

1

�

2

E

�

jX

1

j

2

1

fjX

1

j

2

>nt

2

�

2

g

�

whi
h tends to zero as n ! 1 by the DCT), but for appli
ations

it's important to know that independent but non-iid summands still lead to a CLT.

This \Lindeberg Condition" implies both of

max

j�n

�

2

j

s

2

n

! 0 max

j�n

P fjX

j

j=s

n

> �g ! 0

as n ! 1, for any � > 0; roughly, no single X

j

is allowed to dominate the sum S

n

. This


ondition follows from the easier-to-verify Liapunov Condition, (9Æ > 0) s.t.:

s

�2�Æ

n

n

X

j=1

EjX

j

j

2+Æ

! 0 as n!1:

Other versions of the CLT apply to non-identi
ally distributed or nonindependent fX

j

g, but

S

n


annot 
onverge to a normally-distributed limit if E[X

2

℄ = 1; ask for details (or read

Gnedenko and Kolmogorov (1968)) if you're interested.

More re
ently an interesting new approa
h to proving the Central Limit Theorem and related

estimates with error bounds was developed by Charles Stein (Stein, 1972, 1986; Barbour and

Chen, 2005), des
ribed later in these notes.

9.3 Failure of Central Limit Theorem

The CLT only applies to square-integrable random variables fX

j

g � L

2

. Some 
ontemporary

statisti
al work, both theoreti
al and applied, entails heavier-tailed distributions that do not

have a �nite varian
e (or, often, even a �nite mean). In these 
ases, sums and averages of

independent random variables do not have have approximate normal distributions, and may

not even be 
on
entrated around a 
entral value.

For example, if fX

i

g

iid

� Ca(m; s) are IID Cau
hy random variables with pdf and 
h.f.

f(x) =

s=�

s

2

+ (x�m)

2

�(!) = exp

�

im! � sj!j

�

then the sample mean

�

X

n

� Ca(m; s) also has the same Cau
hy distribution| and, in

parti
ular, no weak or strong LLN applies and no CLT applies.

Worse| if f�

i

g

iid

� No(0; 1) are IID standard Normals, then the random variables X

i

:=

1=�

i

j�

i

j have the symmetri
 �-stable St(

1

2

; 0; 1; 0) distribution with 
h.f. �

1

(!) := exp(�j!j

1=2

),

so the sample average

�

X

n

has 
h.f.

�

n

(!) =

h

�

1

(!=n)

i

n

= exp

�

� jn!j

1=2

�

;

the same distribution as nX

1

. The average of several independent repli
ates has a mu
h

wider distribution than the individual terms.

Heavy-tailed distributions like the Fr�e
het, �-Stable, and Pareto arise when modeling in
ome

distribution, weather extremes, vol
ani
 
ows, and many other phenomena.
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10 Distributional Limits of Heavy-Tailed Sums

Although one 
annot expe
t

�

X

n

to have an approximate normal distribution for fX

i

g 6� L

2

,

other distributional limit theorems may still apply. Before we introdu
e those, we introdu
e

some tools useful for studying heavy-tailed distributions.

10.1 Compound Poisson Distributions

Let X

j

have independent Poisson distributions with means �

j

and let u

j

2 R; then the 
h.f.

for Y :=

P

u

j

X

j

is

�

Y

(!) =

Y

exp

�

�

j

(e

i!u

j

� 1)

�

= exp

h

X

(e

i!u

j

� 1)�

j

i

= exp

h

Z

R

(e

i!u

� 1)�(du)

i

for the dis
rete measure �(du) =

P

�

j

Æ

u

j

(du) that assigns mass �

j

to ea
h point u

j

. Evidently

we 
ould take a limit using a sequen
e of dis
rete measures that 
onverges to a 
ontinuous

measure �(du) so long as the integral makes sense, i.e.,

R

R

je

i!u

�1j�(du) <1; this will follow

from the requirement that

R

R

(1 ^ juj)�(du) < 1. Su
h a distribution is 
alled Compound

Poisson, at least when �

+

:= �(R) < 1; in that 
ase we 
an also write represent it in the

form

Y =

N

X

i=1

X

i

; N � Po(�

+

); X

i

iid

� �(dx)=�

+

:

We'll now see that it in
ludes an astonishingly large set of distributions, ea
h with 
h.f. of

the form exp

� R

(e

i!u

� 1)�(du)

	

with \L�evy measure" �(du) as given:

Distribution Log Ch Fun
tion �(!) L�evy Measure �(du)

Poisson Po(�) �(e

i!

� 1) �Æ

1

(du)

Gamma: Ga(�; �) �� log(1�i!=�) �e

��u

u

�1

1

fu>0g

du

Normal: No(0; �

2

) �!

2

�

2

=2 �

1

2

�

2

Æ

00

0

(du)

Neg Bin: NB(�; p) �� log[1�

p

q

(e

i!

� 1)℄

P

1

k=1

�p

k

k

Æ

k

(du)

Cau
hy: Ca(
; 0) �
j!j




�

u

�2

du

Stable: St

A

(�; �; 
) �
j!j

�

[1� i� tan

��

2

sgn(!)℄ 



�

[1 + � sgn u℄�juj

�1��

du;

where 


�

:=

1

�

�(�) sin

��

2

. Try to verify the measures �(du) for the Negative Binomial and

Cau
hy distributions. All these distributions share the property 
alled in�nite divisibility

(\ID" for short), that for every integer n 2 N ea
h 
an be written as a sum of n independent
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identi
ally distributed terms. In 1936 the Fren
h probabilist Paul L�evy and Russian proba-

bilist Alexander Ya. Khin
hine dis
overed that every distribution with this property must

have a 
h.f. of a very slightly more general form than that given above,

log �(!) = ia! �

�

2

2

!

2

+

Z

R

�

e

i!u

� 1� i! h(u)

�

�(du);

where a 2 R and � 2 R

+

are 
onstants and where h(u) is any bounded Borel fun
tion

that a
ts like u for u 
lose to zero (for example, h(u) = ar
tan(u) or h(u) = sin(u) or

h(u) = u=(1 + u

2

)). The measure �(du) need not quite be �nite, but we must have u

2

integrable near zero and 1 integrable away from zero... one way to write this is to require

that

R

(1 ^ u

2

) �(du) < 1, another is to require

R

u

2

1+u

2

�(du) < 1. Some authors 
onsider

the �nite measure �(du) =

u

2

1+u

2

�(du) and write

log �(!) = ia! +

Z

R

�

e

i!u

� 1� i! h(u)

�

1 + u

2

u

2

�(du);

where now the Gaussian 
omponent

��

2

!

2

2

arises from a point mass for �(du) of size �

2

at

u = 0.

If u is lo
ally integrable, i.e., if

R

�

��

juj �(du) < 1 for some (and hen
e every) � > 0, then

the term \�i! h(u)" is unne
essary (it 
an be absorbed into ia!). This always happens if

�(R

�

) = 0, i.e., if � is 
on
entrated on the positive half-line. Every in
reasing stationary

independent-in
rement sto
hasti
 pro
ess X

t

(or subordinator) has in
rements whi
h are

in�nitely divisible with � 
on
entrated on the positive half-line and no Gaussian 
omponent

(�

2

= 0), so has the representation

log�(!) = ia! +

Z

1

0

�

e

i!u

� 1

�

�(du)

for some a � 0 and some measure � on R

+

with

R

1

0

(1 ^ u) �(du) < 1. In the 
ompound

Poisson example, �(du) =

P

�

j

Æ

u

j

(du) was the sum of point masses of size �

j

at the possible

jump magnitudes u

j

. This interpretation extends to help us understand all ID distributions:

every ID random variable X may be viewed as the sum of a 
onstant, a Gaussian random

variable, and a 
ompound Poisson random variable, the sum of independent Poisson jumps

of sizes u 2 E � R with rates �(E).

10.2 Stable Limit Laws

Let S

n

= X

1

+� � �+X

n

be the partial sum of iid random variables. IF the random variables are

all square integrable, THEN the Central Limit Theorem applies and ne
essarily

S

n

�n�

p

n�

2

=)

No(0; 1). But what if ea
h X

n

is not square integrable? We have already seen that the CLT

fails for Cau
hy variables X

j

. Denote by F (x) = P[X

n

� x℄ the 
ommon CDF of the fX

n

g.
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Theorem 6 (Stable Limit Law) Let S

n

=

P

j�n

X

j

be the sum of iid random variables.

There exist 
onstants A

n

> 0 and B

n

2 R and a non-trivial distribution G for whi
h the

s
aled and 
entered partial sums 
onverge in distribution

S

n

�B

n

A

n

=) G

to a non-trivial limit G if and only if fX

j

g � L

2

(in whi
h 
ase A

n

�

p

n, B

n

= n�+O(

p

n),

and G = No

�

�; �

2

) is the Normal distribution) or there are 
onstants 0 < � < 2, M

�

� 0,

and M

+

� 0, with M

�

+M

+

> 0, su
h that as x ! 1 the following limits hold for every

� > 0:

M

+

= lim

x!1

x

�

[1� F (x)℄ and, if M

+

> 0,

1� F (x�)

1� F (x)

! �

��

(6)

M

�

= lim

x!1

x

�

[F (�x)℄ and, if M

�

> 0,

F (�x�)

F (�x)

! �

��

In this 
ase the limit is the �-Stable Distribution, with index �, with 
hara
teristi


fun
tion

E

�

e

i!Y

�

= exp

�

iÆ! � 
j!j

�

�

1� i� tan

��

2

sgn(!)

�	

(7a)

in the St

A

parametrization, where � =

M

+

�M

�

M

�

+M

+

, 
 = (M

�

+M

+

), and Æ 2 R is arbitrary.

The sequen
es A

n

, B

n

must be (see Se
tion (10.5))

A

n

=

�

L

A

n

�

n

1=�

B

n

=

(

�

L

B

n

��

�
 tan

��

2

� Æ

��

n

1=�

� n

�

� 6= 1

�

L

B

n

�

2�


�

n logn � = 1

(8)

for 
onstants or sequen
es L

A

n

;L

B

n

that, like (logn)

p

for any power p 2 R but not like n

p

for

any p 6= 0, are \slowly varying" in the sense that

lim

n!1

L


n

L

n

= 1

for every 
 > 0. Don't get mesmerized by this| think of the L

n

s as proportionality 
onstants.

For � 2 (1; 2) the sample means 
onverge at rate n

(1��)=�

to EY , more slowly (mu
h more

slowly, if � is 
lose to one) than in the L

2


ase where the 
entral limit theorem applies and

�

X

n

! � at rate n

�1=2

. No means exist for � � 1. The limits in (6) above are equivalent

to the requirement that F (x) / jxj

��

L

�

(x) as x ! �1 and (1 � F (x)) / x

��

L

+

(x) as

x ! +1 for slowly varying fun
tions L

�

| roughly, that F (�x) and 1 � F (x) are both

/ x

��

(or zero) as x!1, i.e., that the pdf falls o� like jxj

���1

in both dire
tions.
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The simplest 
ase is the symmetri
 �-stable (S�S). For 0 < � � 2 and 0 < 
 < 1, the

St(�; 0; 
; 0) has 
h.f.

�(!) = e

�
j!j

�

This in
ludes the 
entered Cau
hy Ca(0; s) (with � = 1, 
 = s) and the 
entered Normal

No(0; �

2

) (with � = 2, 
 = �

2

=2). The S�S family interpolates between these (for 1 < � < 2)

and extends them (for 0 < � < 1) to distributions with even heavier tails.

Although ea
h Stable distribution has an absolutely 
ontinuous distribution with 
ontinuous

unimodal probability density fun
tion f(y), these two 
ases and the \inverse Gaussian" or

\L�evy" distribution with � = 1=2 and � = �1 are the only ones whose pdf is available in


losed form. Perhaps that's the reason these are less studied than normal distributions; still,

they are very useful for problems with \heavy tails", i.e., where P[X > u℄ does not die o�

qui
kly with in
reasing u. The symmetri
 (S�S) ones all have bell-shaped pdfs.

Moments are easy enough to 
ompute but, for � < 2, moments EjXj

p

are only �nite for

p < �. In parti
ular, means only exist for � > 1 and none of them has a �nite varian
e.

The Cau
hy has �nite moments of order p < 1, but (despite its symmetry) does not have a

well-de�ned mean.

Equation (6) says that ea
h tail must be fall o� like a power (sometimes 
alled Pareto tails),

and the powers must be identi
al; it also gives the tail ratio. A 
ommon spe
ial 
ase is

M

�

= 0 (or equivalently � = 1) , the \one-sided" or \fully skewed" Stable. For 0 < � < 1

these take only values in [Æ;1) (R

+

if Æ = 0). For example, random variables X

n

with

the Pareto distribution (often used to model in
ome) given by P[X

n

> t℄ = (1 + t=k)

��

for

t 2 R

+

and some � > 0; k > 0 will have a stable limit for their partial sums if � < 2, and

(by CLT) a normal limit if � � 2. There are 
lose 
onne
tions between the theory of Stable

random variables and the more general theory of statisti
al extremes. Ask me for referen
es

if you'd like to learn more about this ex
iting area.

Expression (7a) for the �-stable 
h.f. (
alled the \A-parametrization" St

A

(�; �; 
; Æ) by Zolo-

tarev (1986)) behaves badly as � ! 1 if � 6= 0, be
ause the tangent fun
tion has a pole at

�=2| so, for � > 0, the imaginary part of logE

�

e

i!Y

�


onverges to +1 as � % 1 and to

�1 as �& 1 (the signs reverse for � < 0). For � � 1 the 
omplex part of the log 
h.f. is:

=

�

logE[e

i!Y

℄

	

= iÆ! + i�
 tan

��

2

j!j

�

sgn(!)

= iÆ! + i�
 tan

��

2

j!j

��1

!

= i!

�

Æ + �
 tan

��

2

�

� i�
 tan

��

2

!

�

1� j!j

��1

�

where the last term is bounded as �! 1, so (following V. M. Zolotarev, 1986) the �-stable

is often parametrized di�erently in the \M -parametrization" St

M

(�; �; 
; Æ) as

E[e

i!Y

℄ = exp

�

�
j!j

�

+ iÆ

�

! � i�
 tan

��

2

!

�

1� j!j

��1

�	

(9)

for � 6= 1 with shifted \drift" term Æ

�

= Æ+ �
 tan(��=2). You 
an �nd out more details by

asking me or reading Breiman (1968, Chapter 9).
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10.3 Examples

Let fU

n

g

iid

� Un(0; 1), and set X

n

:= 1=U

n

. How would you des
ribe the distribution of

S

n

:=

P

j�n

X

j

, or of

�

X

n

:=

1

n

S

n

? Evidently EX

n

=

R

1

0

1

u

du =1, so

1

n

S

n

!1 a.s.; to get

any interesting limit we will have to res
ale or re
enter or both.

By Theorem6, there exist sequen
es fA

n

g, fB

n

g su
h that (S

n

� B

n

)=A

n

) G for a non-

trivial distribution G if and only if X

n

2 L

2

(whi
h fails in this 
ase) or if the CDF

F (z) = P[X

n

� z℄ = P[U

n

� 1=z℄ =

(

1� 1=z z > 1

0 z � 1

satis�es for some 0 < � < 2 the 
onditions M

+

= lim

x!1

x

�

[1 � F (x)℄ � 0, M

�

=

lim

x!1

x

�

[F (�x)℄ � 0, (M

�

+M

+

) > 0 and, if M

+

> 0,

1� F (x�)

1� F (x)

=

1=x�

1=x

! �

��

:

Evidently the 
onditions hold for � = 1, M

�

= 0, and M

+

= 1, so � =M

+

=(M

�

+M

+

) = 1

and 
 = (M

�

+M

+

) = 1. By (8), with � = � = 
 = 1, suitable sequen
es are given by

A

n

= n and B

n

=

2

�

n logn, so

S

n

�

2

�

n log n

n

=

S

n

n

�

2

�

log n � St

M

(� = 1; � = 1; 
 = 1; Æ = 0);

or

S

n

n

� St

M

(� = 1; � = 1; 
 = 1; Æ =

2

�

logn):

Sample averages

�

X

n

of X

j

:= (1=U

j

) will grow to in�nity at approximate rate (2=�) logn,

and

�

X

n

� (2=�) logn will have an asymptoti
 St

M

(1; 1; 1; 0) distribution. What do you think

happens to

�

X

n

for X

n

:= U

�1=�

n

for other values of � > 0?

10.4 Key Idea of the Stable Limit Laws

The stable limit law of Theorem6 says that if there exist nonrandom sequen
es A

n

> 0 and

B

n

2 R and a nondegenerate distribution G su
h that the partial sums S

n

:=

P

j�n

X

j

of

iid random variables fX

j

g satisfy

S

n

�B

n

A

n

=) G (10)

then Gmust be either the normal distribution or an �-stable distribution for some 0 < � < 2.

The key idea behind the theorem is that if a distribution � with 
df G satis�es (10) then

also for any n the distribution of the sum S

n

of n independent random variables with 
df G
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must also (after suitable shift and s
ale 
hanges) have 
df G| i.e., that 


n

S

n

+ d

n

� G for

some 
onstants 


n

> 0 and d

n

2 R, so the 
hara
teristi
 fun
tion �(!) :=

R

e

i!x

G(dx) and

log 
h.f.  (!) := log�(!) must satisfy

�(!) = E exp fi!(


n

S

n

+ d

n

)g

= exp(i!d

n

) �(!


n

)

n

 (!) = i!d

n

+ n (


n

!) (11)

whose only solutions are the normal and �-stable distributions. Here's a sket
h of the proof

for the symmetri
 (S�S) 
ase, where  (�!) =  (!) and so d

n

= 0. Set 
 := � (1) and

note that (11) with ! = 


k

n

for k = 0; 1; : : : implies su

essively:

 (


n

) =

�


n

 (


2

n

) =  (


n

)

1

n

=

�


n

2

: : :  (


k

n

) =

�


n

k

:

Results from 
omplex analysis imply this must hold for all k � 0, not just integers. Thus,

with jwj = 


k

n

and k = log jwj= log 


n

,

 (w) = �
n

�k

= �
 exp f�(log jwj)(logn)=(log 


n

)g

= �
jwj

�(log n)=(log 


n

)

= �
jwj

�

;

where � is the 
onstant value of

� log n

log 


n

. It follows that 


n

= n

�1=�

(i.e., S

n

=n

1=�

� G) and

that �(!) = e

�
j!j

�

, the 
h.f. for S�S for 0 < � < 2 and for No(0; 2
) for � = 2.

10.5 The 
onstants A

n

and B

n

Here we show where the 
onstants given in (8) 
ome from. Let �(!) be the 
h.f. of iid random

variables Y

i

� St

M

(�; �; 
; Æ) (given in (9)), and let  (!) := log �(!) be its logarithm. For

the partial sums S

n

:=

P

n

j=1

Y

j

to have the property that (S

n

�B

n

)=A

n

� St

M

(�; �; 
; Æ) has

the same distribution as Y

j

for ea
h n, we need

 (!) = �
j!j

�

+ iÆ

�

! � i�
 tan

��

2

!

�

1� j!j

��1

�

= n (!=A

n

)� i!B

n

=A

n

= �

h

n

A

n

�

i


j!j

�

+ i!

n

A

n

�

Æ

�

� �
 tan

��

2

� B

n

=n

	

(12)

+

h

n

A

n

�

i

i�
 tan

��

2

!j!j

��1

:

From the real part of (12) we �nd A

n

= n

1=�

, and from the imaginary part we �nd B

n

=

�

�
 tan

��

2

� Æ

��

n

1=�

� n

�

for � 6= 1. Find the value of B

n

for � = 1 as a limit.
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