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1 Extreme Values

Most probability books (including our text) do a fine job of covering the
approximate probability distribution of sums (or averages) of independent
random variables. If {Xj} are independent and identically distributed (i.i.d.)
with any distribution having a finite mean µ and variance σ2, the sum and
average

Sn :=

n
∑

j=1

X̄n :=
1

n
Sn

are each asymptotically normally distributed in the sense that their stan-
dardized version

Zn :=
Sn − nµ

σ
√

n
=

X̄n − µ

σ/
√

n

satisfies
lim

n→∞
Pr[a < Zn ≤ b] = Φ(b) − Φ(a)

uniformly in −∞ < a < b < ∞, where

Φ(x) :=
1√
2π

∫ x

−∞
e−z2/2 dz

denotes the standard Normal CDF function. Some texts go further and
discuss limits for sums of random variables Xj that do not have finite means
or variances— in that case the α-Stable distribution emerges as another (in
fact, the only other) possible limiting distribution for normalized sums of
the form

Sn − an

bn

for suitable non-random sequences {an}, {bn}.
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In light of recent concerns about economic crises and climate changes lead-
ing to catastrophes in storm and drought severity, temperature, hurricane
intensity, and such, there is a new interest in looking not at the probability
distributions of averages (like X̄n) but at those of extremes, like:

X∗
n := max

1≤j≤n
Xj .

1.1 Example 1: Exponential Distribution

Let {Xj} have independent Exponential distributions Xj
iid∼ Ex(λ), and let

X∗
n be the largest of the first n. Can we find non-random sequences {an},

{bn} and a limiting CDF G(z) for which

lim
n→∞

Pr

[

X∗
n − an

bn
≤ z

]

= G(z)?

For any sequences {an}, {bn} the exact probabilities are

Pr

[

X∗
n − an

bn
≤ z

]

= Pr[X∗
n ≤ an + bnz]

= Pr
{

∩n
j=1[Xj ≤ an + bnz]

}

= {Pr[X1 ≤ an + bnz]}n

=
{

1 − e−λ(an+bnz)
}n

The goal is to find {an, bn} for which this converges as n → ∞ to a DF. If
we now choose an = (log n)/λ and bn = 1/λ,

=

{

1 − 1

n
e−z

}n

→ G(z) := exp
(

− e−z
)

, (1)

the standard Gumbel Distribution. Evidently its median is − log log 2 (since
G(− log log 2) = exp(− log 2) = 1/2), so the median m∗

n for X∗
n defined by

1/2 = Pr[X∗
n ≤ m∗

n] is

m∗
n =

1

λ
log n − 1

λ
log log 2,

which grows with n at a logarithmic rate.
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For example, if we imagine that sprinters’ speed in m/s are given by the
Ex(1) distribution, then the fastest speed of n independently-drawn sprinters
would have approximately the rescaled Gumbel Distribution with median
m∗

n = log n − log log 2; this has even odds of exceeding Usain Bolt’s 2009
world-record 9.69s 100m pace if

log n − log log 2 ≥ 100m

9.69s
= 10.32m/s

log n ≥ log log 2 + 10.32

n ≥ exp(−0.37 + 10.32 = 9.95)

= 21 023.73,

i.e., there’s about an even chance that one of 21,024 independent Ex(1)
random variables would exceed Bolt’s pace.

For this example we can compute exactly the median for X∗
n or, if we prefer,

the probability that X∗
n exceeds 9.95 for n = 21024; the latter, for example,

is
Pr[X∗

21024 > 10.32] =
[

1 − exp(−10.32)
]21024

= 0.5000176,

just as expected.

1.2 Example 2: Normal Distribution

Now let {Xj} have independent standard Normal distributions Xj
iid∼ No(0, 1),

set X∗
n := max1≤j≤n Xj , and seek non-random {an}, {bn} and a limiting

CDF G(z) for b−1
n (X∗

n − an). First we need to note that, for x > 0,

Φ(−x) =

∫ ∞

x
φ(z) dz

≤
∫ ∞

x

z

x
φ(z) dz =

1

x
√

2π

∫ ∞

x
ze−z2/2 dz =

1

x
φ(x);

Gordon’s Inequality improves this to the two-sided bound

1 ≤ φ(x)

xΦ(−x)
≤ 1 +

1

x2

for every x > 0. Now let an = −Φ−1(1/n) be the (1 − 1/n)’th quantile and

set bn = 1/an; note that an ≍
√

2 log n grows as n → ∞, while bn → 0. By
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Taylor’s theorem and the evenness of φ(z), for fixed z ∈ R,

log Φ(−an − bnz) = log Φ(−an) − bnz
φ(−an)

Φ(−an)
+ o(bnz)

= log
1

n
− z

φ(an)

an Φ(−an)
+ o(bnz)

= log
1

n
− z + o(bnz)

so

Pr[X1 ≤ an + bnz] = Φ(an + bnz)

= 1 − 1

n
e−z+o(1/

√
log n), and

Pr[X∗
n ≤ an + bnz] ≈

[

1 − n−1e−z
]n

≈ exp(−e−z) =: G(z),

again the Gumbel distribution. Similarly, if {Xi} iid∼ No(µ, σ2) (now with
arbitrary mean and variance) then we simply change the location and scale
to find that with an = µ − σΦ−1(1/n) and bn = −σ/Φ−1(1/n) we have

Pr

[

X∗
n − an

bn
≤ z

]

→ G(z),

with median

m∗
n = µ − σΦ−1(1/n) + (log log 2)/Φ−1(1/n)

growing like σ
√

2 log n as n → ∞.

Typically unbounded distributions like the Exponential and Normal (as well
as the Gamma, Lognormal, Weibull, etc.) whose tails fall off exponentially
or faster will have this same Gumbel limiting distribution for the maxima,
and will have medians (and other quantiles) that grow as n → ∞ at the rate
of (some power of) log n.

1.3 Example 3: Pareto Distribution

Distributions with “fatter tails” (i.e., those for which Pr[X > x] falls off no
faster than a power of x) will have a different limit. For example, let {Uj}
be i.i.d. Uniform random variables and set Xj = 1/Uj ; then Xj has the
“unit Pareto distribution” determined by

Pr[Xj > x] = 1/x, x ≥ 1
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and the maximum X∗
n of n i.i.d. unit Paretos will satisfy

Pr[X∗
n ≤ an + bnz] =

(

1 − [an + bnz]−1
)n

an + bnz ≥ 1.

With an = 0 and bn = n,

=
(

1 − 1

nz

)n → e−1/z =: F (z), z > 0, (2)

the “unit Fréchet Distribution”. Similarly for Xj = ǫU
−1/α
j with the Pa(α, ǫ)

distribution satisfying

Pr[Xj > x] = ǫα/xα, x ≥ ǫ,

set an = 0 and bn = n1/αǫ, then

Pr[X∗
n ≤ an + bnz] =

(

1 − 1

n
z−α

)n → e−z−α

=: F (z | α), z > 0,

the Fréchet distribution with shape parameter α > 0. The Fréchet median
is (log 2)−1/α, so X∗

n has median

m∗
n = n1/αǫ(log 2)−1/α

that grows like a power of n. This is typical for heavy-tailed distributions.

1.4 Example 4: Uniform Distribution

The minimum of n i.i.d. Ex(λ) random variables has the Ex(nλ) distribution,
so it converges to zero at rate 1/n; similarly the minimum of n We(α, λ)
(Weibull) random variables has the We(α, nλ) distribution and converges to
zero at rate n−1/α. It follows immediately that for the maximum X∗

n of n
reversed (or negative) Weibull random variables with cdf and pdf

F (x | α, λ) = e−λ(−x)α

x < 0 (3)

f(x | α, λ) = λ (−x)α−1e−λ(−x)α

1{x<0},

the limiting distribution of b−1
n [X∗

n − an] is the reversed We(α, 1) Weibull if
an = 0 and bn = (λn)−1/α, with median m∗

n = −(nλ/ log 2)−1/α increasing
to zero as n → ∞.

5



Similarly the maximum X∗
n of n i.i.d. uniform random variables Xj ∼

Un(L,R) has limiting distribution:

Pr[b−1
n [X∗

n − an] ≤ z] = Pr[X∗
n ≤ an + bnz]

=

[

1 − R − an − bnz

R − L

]n

if L ≤ an + bnz ≤ R

= (1 + z/n)n → ez if z ≤ 0 and n > |z|

for an = R and bn = (R − L)/n, the unit Reversed We(1, 1) Weibull with
median for X∗

n of
m∗

n = R − (R − L)(log 2)/n

increasing at rate 1/n to an upper bound of R. The suitably standardized
minimum and maximum of n independent Be(α, β) random variables have
asymptotic We(α, 1) and reverse We(β, 1) distributions, respectively. These
are typical of the maximal behavior for bounded random variables with
continuous distributions.

Fisher and Tippett (1928) first proved that location-scale families of these
three distributions— Gumbel (Equation (1)), Fréchet (Equation (2)), and
reversed Weibull (Equation (3))— are the only possible limits for maxima
of independent random variables. Much later McFadden (1978) discovered
that all three of these limiting distributions could be expressed in the same
functional form as special cases of a single three-parameter “Generalized
Extreme Value” (GEV) distribution, with CDF

F (x;µ, σ, ξ) = exp

{

−
[

1 + ξ

(

x − µ

σ

)]−1/ξ
}

In some ways I feel this was unfortunate, because now it is common for
people to model and fit the GEV without thinking very clearly about the
specific form of their data and distributions.

2 Threshold Exceedances

As before let {Xj} be i.i.d. for 1 ≤ j ≤ n and set Tj = j−1/2
n ∈ (0, 1).

Let an and bn be real numbers and set Yj = an + bnXj . For sufficiently
large u, the numbers N(Ri) of points (Tj , Yj) in disjoint rectangles Ri =
(si, ti] × (ui, vi] with 0 ≤ si < ti ≤ 1 and u ≤ ui < vi ≤ ∞ will be
approximately independent Poisson random variables, with means

λi = n(ti − si)[F (an + bnvi) − F (an + bnui)]
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Here we look for choices of an and bn for which this has a simple form, and
then exploit it.

2.1 Example 1: Weibull Distribution

If Pr[Xj > x] = e−βxα

for x > 0, then for the choice an = [β−1 log n]1/α and
bn = an/(α log n) we have for all large enough z,

n[1 − F (an + bnz)] = n exp
(

− β(an + bnz)α
)

= n exp
(

− log n(1 + z/α log n)α
)

= n exp
(

− log n(1 + z/ log n + o(1/ log n))
)

≈ e−z,

so {Tj , Yj = (Xj − an)/bn} have approximately the Poisson distribution on
[0, 1] × R with intensity measure ν(dt dy) = e−y dt dy. A similar approach
with suitable an, bn works for any other distribution in the Gumbel domain.

The maximum Mt := max{Yj : Tj ≤ t} is a non-decreasing stochastic
process on the unit interval 0 < t < 1, with CDF

Ft(z) = Pr[Mt ≤ z]

= Pr[No Poisson points in (0, t] × (z,∞)]

= e−te−z

,

the Gumbel distribution. The events [Mt ≤ z] and [X∗
⌊nt⌋ ≤ an + bnz] are

identical.

2.1.1 Related Max-Stable Process

Let {(Tj , Yj)} be the points of a Po(e−ydt dy) random field on all of R
d×R+,

and let f(t) be any strictly positive function; define a random process by

Z(t) = sup
j
{Yj/f(Tj − t)}.
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If f(t) =
∑

ai1Ai
(t) is a simple function, then

Pr[Z(t) ≤ z] =
∏

i

Pr
[

sup
j
{Yj/ai ≤ z : Tj − t ∈ Ai

]

=
∏

i

Pr
[

No Poisson pts in (Ai + t) × (aiz,∞)
]

=
∏

i

exp
(

− |Ai|e−aiz
)

= exp

(

−
∫

e−zf(s)ds

)

,

so Z(t) is a stationary process. For any (not necessarily simple) strictly
positive f(t) on R

d, the same identity follows from LDCT.

2.2 Example 2: Pareto Distribution

If Pr[Xj > x] = ǫαx−α for x > ǫ, then for the choice an = 0 and bn = ǫn1/α

we have for all large enough z,

n[1 − F (an + bnz)] = n
(

0 + ǫn1/αz)α
)

= z−α,

so {Tj , Yj = (Xj − an)/bn} have approximately the Poisson distribution
on [0, 1] × R+ with intensity measure ν(dt dy) = αy−α−1 dt dy. A similar
approach with suitable an, bn works for any other distribution in the Fréchet
domain.

The maximum Mt := max{Yj : Tj ≤ t} is a non-decreasing stochastic
process on the unit interval 0 < t < 1, with CDF

Ft(z) = Pr[Mt ≤ z]

= Pr[No Poisson points in (0, t] × (z,∞)]

= e−tz−α

,

the Fréchet distribution. The events [Mt ≤ z] and [X∗
⌊nt⌋ ≤ an + bnz] are

identical.

Note that the sum of the {Yj : Tj ≤ t} will be finite almost-surely if
∫ ∞
0 (z ∧ 1)αz−α−1 dz < ∞, i.e., if 0 < α < 1; in that case the non-decreasing

process

St :=
∑

{Yj : Tj ≤ t}
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is a fully-skewed α-Stable process with distribution

∼ St0

(

α, β = 1, γ =
πt

2Γ(α) sin(πα/2)

)

and the {Yj} are the “jumps” of St. A similar representation holds for
1 ≤ α < 2, but “compensation” is required (sort of like subtracting an
infinite drift from St). There is no α-Stable process for α > 2, although
the connection between Fréchet distribution and the Poisson point process
remains.

2.2.1 Related Max-Stable Process

Let {(Tj , Yj)} be the points of a Po(αy−α−1dt dy) random field on all of
R

d × R+, and let 0 ≤ f(t) ∈ Lα(Rd, dt); define a random process by

Z(t) = sup
j
{Yjf(Tj − t)}.

If f(t) =
∑

ai1Ai
(t) is a simple function, then

Pr[Z(t) ≤ z] =
∏

i

Pr
[

sup
j
{Yj ai ≤ z : Tj − t ∈ Ai

]

=
∏

i

Pr
[

No Poisson pts in (Ai + t) × (z/ai,∞)
]

=
∏

i

exp
(

− |Ai|(z/ai)
−α

)

= exp

(

−z−α

∫

f(s)αds

)

,

so Z(t) is a stationary process with a Fréchet Fr
(

α, ‖f‖α
α

)

distribution. For
non-simple 0 ≤ f ∈ Lα, the same identity follows from LDCT.

2.3 Example 3: Beta Distribution

If Xj
iid∼ Be(α, β) then for small ǫ,

Pr[Xj > 1 − ǫ] ≈ Γ(α + β)

Γ(α)Γ(β)

∫ 1

1−ǫ
(1 − x)β−1 dx

=
ǫβ

βB(α, β)
, B(α, β) :=

Γ(α)Γ(β)

Γ(α + β)
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so for an = 1 and bn = (βB(α, β)/n)1/β , for z < 0 we have

n Pr[Xj > an + bnz] ≈ n

βB(α, β)
(1 − an − bnz)β

= (−z)β

so {Tj , Yj = (Xj − an)/bn} have approximately the Poisson distribution
on [0, 1] × R− with intensity measure ν(dt dy) = β(−y)β−1 dt dy. A similar
approach with suitable an, bn works for any other distribution in the Reverse
Weibull domain.

The maximum Mt := max{Yj : Tj ≤ t} is a non-decreasing stochastic
process on the unit interval 0 < t < 1, with CDF

Ft(z) = Pr[Mt ≤ z]

= Pr[No Poisson points in (0, t] × (z,∞)]

= e−t(−z)β

,

the reversed Weibull distribution. The events [Mt ≤ z] and [X∗
⌊nt⌋ ≤ an+bnz]

are identical.

The minimum of n i.i.d. Be(α, β) random variables can be studied in the
same way; for an = 0 and bn = (αB(α, β)/n)1/α, the points {Tj , Yj =
(Xj − an)/bn} have approximately the Poisson distribution on [0, 1] × R+

with intensity measure ν(dt dy) = αyα−1 dt dy, and the cumulative minimum
mt = min{Yj : Tj ≤ t} is a non-increasing stochastic process satisfying
Pr[mt > z] = e−tzα

, the usual (un-reversed) Weibull.

2.3.1 Related Max-Stable Process

Let {(Tj , Yj)} be the points of a Po(αyα−1dt dy) random field on all of R
d ×

R+, and let 0 < f(t) ∈ Lα(Rd, dt). Define a random process by

Z(t) = inf
j
{Yj/f(Tj − t)}.

10



If f(t) =
∑

ai1Ai
(t) is a simple function, then

Pr[Z(t) > z] =
∏

i

Pr
[

sup
j
{Yj/ai > z : Tj − t ∈ Ai

]

=
∏

i

Pr
[

No Poisson pts in (Ai + t) × (0, z ai]
]

=
∏

i

exp
(

− |Ai|(z ai)
α
)

= exp

(

−zα

∫

f(s)αds

)

,

so Z(t) is a stationary process with a Weibull We
(

α, ‖f‖α
α

)

distribution. For
non-simple 0 ≤ f ∈ Lα, the same identity follows from LDCT.

Leftovers

• Order statistics from PP perspective

• Log likelihood— exponential family?

• Conjugate priors? Fisher information? Jeffreys’ rule?
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3 Martingales

Now let {Xn} be a sequence of random variables with the property that
E|Xn| < ∞ for each j and, for m > n,

E[Xm | X1, ...,Xn] = Xn. (4)

Such a sequence is called a “martingale”. They arise as random walks with
mean-zero steps and (more interesting) as the fortune at time n of a player in
a fair game who uses any (causal) strategy whatsoever for selecting bets, and
also as tools in the modern study of Markov chains and Markov processes.
A particularly interesting property of martingales is that the bound

Pr[X∗
n > a] ≤ E[(Xn)+]

a

for every a > 0, where (x)+ = max(0, x) is the “positive part” of a real
number x (and satisfies (x)+ ≤ |x|). Note Markov’s inequality would give
the same value as a bound on Pr[Xn > a]; this is much stronger in that it
gives a bound on the maximum value of {Xj}j≤n. For example, a simple
random walk Xn =

∑

j≤n ζj with independent normally-distributed steps

ζj
iid∼ No(0, σ2) has Xn ∼ No(0, nσ2) with expectation E[|Xn|] =

√

nσ2/2π,
so

Pr[ sup
0≤j≤n

Xj > a] ≤ σ
√

n

a
√

2π

Taking σ2 = 1/n and n → ∞ leads to a bound on the maximum of Brownian
Motion over the unit interval.

If Yn is an asymmetric random walk that steps up and down one unit with
probabilities p, q respectively with p < q (for example, Yn might be the
fortune of a gambler at a casino that offers customers only the opportunity
to wager $1 on any of the even-money Roulette bets (red, odd, 1–18, etc.),
with p = 9/19 and q = 10/19). While Yn itself is not a martingale,

Xn = (q/p)Yn

is, and has constant expectation E[Xn] = (q/p)y if Y0 = y > 0 is the player’s
original fortune. If the Casino maintains a reserve of $R then the probability
that the gambler can ever “break the bank” by attaining a fortune of y + R
is bounded above by

Pr[X∗
n > y + R] = Pr[Y ∗

n > (q/p)y+R]

≤ E(Yn)+
(q/p)y+R

=
(q/p)y

(q/p)y+R
= (p/q)R;
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the Casino can limit the probability that a customer will exhaust its re-
sources to, say, no more than one in a million by maintaining a cash reserve
exceeding log(10−6)/ log(9/10) = $131.13. Of course if it allows bets of up
to a limit $L (instead of $1) the required reserves increase to R ≥ 131L,
and it increases by another factor of 18 of the Casino allows all the usual
Roulette bets including single numbers (which pay off at 36:1, instead of
2:1). How (if at all) does the possibility of multiple simultaneous customers
change this?
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