Final Examination

STA 711: Probability \& Measure Theory

Saturday, 2015 Dec 12, 2:00-5:00 pm

This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, please ask me to clarify it. Unless a problem states otherwise, you must show your work. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in closed form with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever, possible simplify.

Good luck.

1.	$/ 20$	5.	$/ 20$		
2.	$/ 20$	6.	$/ 20$		
3.	$/ 20$	7.	$/ 20$		
4.	$/ 20$	8.	$/ 20$		
180			$/ 80$		
Total:	$/ 160$				

Print Name: \qquad

Problem 1: Let $Z \sim \operatorname{No}(0,1)$ and set $X:=Z^{2}, \mathcal{G}:=\sigma(Z), \mathcal{H}:=\sigma(X)$.
a) (5) Find $a, b \in \mathbb{R}$ such that the random variable $Y:=a+b Z$ is the orthogonal projection of X onto the span of Z, i.e., satisfies

$$
\begin{gathered}
\mathrm{E}(X-Y) Z=0 \quad \text { and } \mathrm{E}(X-Y) 1=0 \\
Y=\underbrace{\overbrace{b}}_{a} Z
\end{gathered}
$$

b) (5) Find the conditional expectation of X, given $\mathcal{G}=\sigma(Z)$:

$$
\mathrm{E}[X \mid \mathcal{G}]=
$$

c) (5) Find the conditional expectation of Z, given $\mathcal{H}=\sigma(X)$:

$$
\mathrm{E}[Z \mid \mathcal{H}]=
$$

d) (5) Give an event $A \in \mathcal{G}=\sigma(Z)$ that is not in $\mathcal{H}=\sigma(X)$, if possible, and an event $B \in \mathcal{H}$ that is not in \mathcal{G}, if possible. If not possible, explain why.
$\mathcal{G} \backslash \mathcal{H} \ni A=$ \qquad $\mathcal{H} \backslash \mathcal{G} \ni B=$ \qquad

Problem 2: Let $X_{n} \rightarrow X$ pr. for some $X \in L_{1}(\Omega, \mathcal{F}, \mathrm{P})$, and let $Y \in$ $L_{2}(\Omega, \mathcal{F}, \mathrm{P})$. For each part below answer "Yes" or "No".

If Yes, indicate which theorem best justifies your answer by selecting Fatou's Lemma, Lebesgue's Dominated or Monotone Convergence Theorems, the Borel/Cantelli lemma, Fubini's Theorem, or the inequalities of Jensen, Minkowski, Hölder, or Markov. No need to show work.
a) If $\left|X_{n}\right|^{1 / 2} \leq Y$ a.s., does $X_{n} \rightarrow X$ in L_{1} ? \bigcirc No \bigcirc Yes, by: \bigcirc Fat \bigcirc DCT \bigcirc MCT $\bigcirc B / C \bigcirc$ Fub \bigcirc Jen \bigcirc Min \bigcirc Höl \bigcirc Mar
b) If $X_{n} \nearrow X \leq Y$, does $X_{n} \rightarrow X$ in L_{1} ? \bigcirc No \bigcirc Yes, by: \bigcirc Fat \bigcirc DCT \bigcirc MCT $\bigcirc B / C \bigcirc$ Fub \bigcirc Jen \bigcirc Min \bigcirc Höl \bigcirc Mar
c) If $X_{n} \leq Y$, is $\mathrm{E}[X] \geq \lim \sup \mathrm{E}\left[X_{n}\right]$? \bigcirc No \bigcirc Yes, by: \bigcirc Fat \bigcirc DCT \bigcirc MCT \bigcirc B/C \bigcirc Fub \bigcirc Jen \bigcirc Min \bigcirc Höl \bigcirc Mar
d) If $\sum_{n} \mathbf{1}_{\left\{X^{2}>n\right\}}<\infty$ a.s, is $X \in L_{2}$? \bigcirc No \bigcirc Yes, by: \bigcirc Fat \bigcirc DCT \bigcirc MCT $\bigcirc B / C \bigcirc$ Fub \bigcirc Jen \bigcirc Min \bigcirc Höl \bigcirc Mar
e) If $(\forall \epsilon>0) \sum \mathrm{P}\left[\left|X_{n}\right|>\epsilon\right]<\infty$, does $X_{n} \rightarrow 0$ a.s.? \bigcirc No \bigcirc Yes, by: \bigcirc Fat \bigcirc DCT \bigcirc MCT \bigcirc B/C \bigcirc Fub \bigcirc Jen \bigcirc Min \bigcirc Höl \bigcirc Mar

Problem 3: Let $\Omega:=\{0,1,2,3\}$ with probability assignment $\mathrm{P}[E]:=$ $\sum_{\omega \in E} 2^{\omega} / 15$ for $E \in \mathcal{F}:=2^{\Omega}$. Consider events $A:=\{0,1\}$ and $B:=\{0,2\}$, and random variables

$$
W(\omega)=\omega \quad X(\omega)=2^{\omega} \quad Y(\omega)=\mathbf{1}_{A}(\omega) \quad Z(\omega)=\mathbf{1}_{B}(\omega)
$$

a) (5) Find the expectation of each RV:

$$
\mathrm{E} W=\ldots \mathrm{E} X=\ldots \mathrm{E} Y=\ldots
$$

b) (5) Are $\sigma(Y)$ and $\sigma(Z)$ independent? \bigcirc Yes \bigcirc No Why?
c) (5) How many events are in the σ-algebra $\sigma(Y, Z)$ generated by Y and Z ? You need not enumerate them.
d) (5) Find the conditional expectation $\mathrm{E}[W \mid Y]$.

Problem 4: Let $\left\{X_{n}\right\}$ and Y be real-valued random variables on $(\Omega, \mathcal{F}, \mathrm{P})$ and for $n, k \in \mathbb{N}$ set $A_{n, k}:=\left\{\omega:\left|X_{n}(\omega)-Y(\omega)\right|>\frac{1}{k}\right\}$.
a) (5) Give the exact conditions on $A_{n, k}$ for $X_{n} \rightarrow Y$ a.s.
b) (5) Give the exact conditions on $A_{n, k}$ for $X_{n} \rightarrow Y p r$.
c) (5) Use your expressions above to prove that almost-sure convergence implies convergence in probability.
d) (5) Prove that $\sin \left(X_{n}\right) \rightarrow \sin (Y)$ in $L_{1}(\Omega, \mathcal{F}, \mathrm{P})$ if $X_{n} \rightarrow Y$ a.s.

Problem 5: Let $\Omega=(0,1]^{2}=\left\{\left(\omega_{1}, \omega_{2}\right): 0<\omega_{j} \leq 1\right\}$ with Lebesgue measure P on the Borel sets \mathcal{F}, and consider the random variables
$X(\omega):=\omega_{1} \quad Y(\omega):=\omega_{2} \quad R(\omega):=\left(\omega_{1}^{2}+\omega_{2}^{2}\right)^{1 / 2} \quad \Theta(\omega):=\arctan \omega_{2} / \omega_{1}$
(so $\omega_{2} / \omega_{1}=\tan \Theta$, with $0<\Theta \leq \pi / 2$)
a) (4) Sketch an event $A \in \sigma(R)$ that is not in $\sigma(X), \sigma(Y)$, or $\sigma(\Theta)$.

b) (4) Sketch an event $B \in \sigma(\Theta)$ that is not in $\sigma(X), \sigma(Y)$, or $\sigma(R)$.

Problem 5 (cont'd): Recall $\Omega=(0,1]^{2}$ with Lebesgue measure
c) (4) Sketch and label independent events $D \in \sigma(R)$ and $E \in \sigma(\Theta)$ that are nontrivial- ie., have probabilities $0<\mathrm{P}(D), \mathrm{P}(E)<1$.

XV) $(+2)$ Are $\sigma(R)$ and $\sigma(\Theta)$ independent? YesNo Why?
d) (8) Sketch and label the events $F:=\left\{\omega: 0<\omega_{1} \leq \omega_{2} \leq 1\right\}$ and $G:=\left\{\omega: 0<\omega_{1} \leq \frac{1}{2}, 0<\omega_{2} \leq 1\right\}$, and compute $\mathrm{E}\left[\mathbf{1}_{F} \mid \mathbf{1}_{G}\right]$. No need to prove anything, just compute the conditional expectation.

$\mathrm{E}\left[\mathbf{1}_{F} \mid \mathbf{1}_{G}\right]=$

Problem 6: Let $\left\{A_{n}\right\}$ be independent events on some probability space $(\Omega, \mathcal{F}, \mathrm{P})$ with $\mathrm{P}\left(A_{n}\right)=2^{-n}$ for $n \in \mathbb{N}$. Fix $\alpha>0$ and set

$$
X_{n}:=\alpha^{n} \mathbf{1}_{A_{n}}
$$

In d) and e), "converge" means "converge to some finite random variable".
a) (4) For which (if any) $\alpha>0$ is $\left\{X_{n}\right\}$ uniformly bounded in L_{1} ? Why?
b) (4) For which (if any) $\alpha>0$ is $\left\{X_{n}\right\}$ uniformly bounded in L_{4} ? Why?
c) (4) For which (if any) $\alpha>0$ is $\left\{X_{n}\right\}$ uniformly bounded in L_{∞} ? Why?
d) (4) For which (if any) $\alpha>0$ does $\sum_{n \in \mathbb{N}} X_{n}$ converge a.s.? Why?
e) (4) For which (if any) $\alpha>0$ does $\sum_{n \in \mathbb{N}} X_{n}$ converge in L_{1} ? Why?

Problem 7: \quad Let $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$ be σ-fields on the set $\Omega=(0,1]$, and let Y be a \mathcal{G}-measurable random variable.
a) (10) Does it follow that Y is also \mathcal{H}-measurable? \bigcirc Yes \bigcirc No If "Yes", give a proof; if "No", give a counter-example".
b) (10) Does it follow that Y is also \mathcal{F}-measurable? \bigcirc YesNo If "Yes", give a proof; if "No", give a counter-example ${ }^{1}$.

[^0]Problem 8: Let $\{X, Y, Z\}$ and $\left\{X_{n}\right\}$ be RVs on the same probability space $(\Omega, \mathcal{F}, \mathrm{P})$. Choose True or False below; no need to explain (unless you can't resist). Each is 2 pt .
a) T F If $\mathrm{E}[\exp (X)]<\infty$ then also $\mathrm{E}|X|<\infty$.
b) T F If $X_{n} \rightarrow X$ pr. and if Ω is countable then $X_{n} \rightarrow X$ a.s.
c) T F If X, Y are independent and both are in L_{2} then the product $X Y$ is in L_{2} too.
d) T F If $Z=g(X, Y)$ for some Borel function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ then $\sigma(Z) \subseteq \sigma(X, Y)$.
e) T F If the events $A:=[X<x]$ and $B:=[Y>y]$ are independent for each $x, y \in \mathbb{R}$ then X, Y are independent RVs.
f) T F If $\sigma(X) \Perp \sigma(Y)$ and $X, Y \in L_{1}$ then $\mathrm{E}[X \mid Y]$ is the constant random variable with value $\mathrm{E}[X]$.
g) $\mathrm{T} F$ If the sum $\sum_{n} \mathrm{P}\left(A_{n}\right)<\infty$ for the events $A_{n}:=[|X|>n]$, then $X \in L_{1}(\Omega, \mathcal{F}, \mathbf{P})$.
h) $\quad \mathrm{T} F \quad$ If $X, Y \in L_{6}$ then $X Y \in L_{3}$ with $\|X Y\|_{3} \leq\|X\|_{6}\|Y\|_{6}$.
i) T F Let $\phi(\omega):=\mathrm{E}\left[e^{i \omega X}\right]$ and $\psi(\omega):=\mathrm{E}\left[e^{i \omega Y}\right]$ be the ch.f.s for X and Y. Then the ch.f. for $Z:=X-Y$ is $\phi(\omega) / \psi(\omega)$ if X, Y are independent.
j) T F If $\mathrm{P}[|X|>t] \geq \mathrm{P}[|Y|>t]$ for each $t>0$ then $\|X\|_{2} \geq\|Y\|_{2}$.

Name:
STA 711: Prob \& Meas Theory

Blank Worksheet

Name:
STA 711: Prob \& Meas Theory

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^{2}	
Beta	$\operatorname{Be}(\alpha, \beta)$	$f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}$	$x \in(0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	
Binomial	$\operatorname{Bi}(n, p)$	$f(x)=\binom{n}{x} p^{x} q^{(n-x)}$	$x \in 0, \cdots, n$	$n p$	$n p q$	$(q=1-p)$
Exponential	Ex(λ)	$f(x)=\lambda e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	$1 / \lambda$	$1 / \lambda^{2}$	
Gamma	$\mathrm{Ga}(\alpha, \lambda)$	$f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_{+}$	α / λ	α / λ^{2}	
Geometric	$\mathrm{Ge}(p)$	$f(x)=p q^{x}$	$x \in \mathbb{Z}_{+}$	q / p	q / p^{2}	$(q=1-p)$
		$f(y)=p q^{y-1}$	$y \in\{1, \ldots\}$	$1 / p$	q / p^{2}	($y=x+1$)
HyperGeo.	$\mathrm{HG}(n, A, B)$	$f(x)=\frac{\binom{A}{A}\binom{B}{-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	$n P$	$n P(1-P) \frac{N-n}{N-1}$	$\left(P=\frac{A}{A+B}\right)$
Logistic	$\operatorname{Lo}(\mu, \beta)$	$f(x)=\frac{e^{-(x-\mu) / \beta}}{\beta\left[1+e^{-(x-\mu) / \beta]^{2}}\right.}$	$x \in \mathbb{R}$	μ	$\pi^{2} \beta^{2} / 3$	
Log Normal	$\mathrm{LN}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-(\log x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}_{+}$	$e^{\mu+\sigma^{2} / 2}$	$e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$	
Neg. Binom.	$\mathrm{NB}(\alpha, p)$	$f(x)=\binom{x+\alpha-1}{x} p^{\alpha} q^{x}$	$x \in \mathbb{Z}_{+}$	$\alpha q / p$	$\alpha q / p^{2}$	$(q=1-p)$
		$f(y)=\binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in\{\alpha, \ldots\}$	α / p	$\alpha q / p^{2}$	$(y=x+\alpha)$
Normal	$\mathrm{No}\left(\mu, \sigma^{2}\right)$	$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$	$x \in \mathbb{R}$	μ	σ^{2}	
Pareto	$\mathrm{Pa}(\alpha, \epsilon)$	$f(x)=(\alpha / \epsilon)(1+x / \epsilon)^{-\alpha-1}$	$x \in \mathbb{R}_{+}$	$\frac{\epsilon}{\alpha-1}{ }^{*}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}{ }^{*}$	
		$f(y)=\alpha \epsilon^{\alpha} / y^{\alpha+1}$	$y \in(\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha-1}{ }^{*}$	$\frac{\epsilon^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)} *$	$(y=x+\epsilon)$
Poisson	$\operatorname{Po}(\lambda)$	$f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_{+}$	λ	λ	
Snedecor F	$F\left(\nu_{1}, \nu_{2}\right)$	$\begin{aligned} f(x) & =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\nu_{1} / \nu_{2}\right)^{\nu_{1} / 2}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \\ & x^{\frac{\nu_{1}-2}{2}}\left[1+\frac{\nu_{1}}{\nu_{2}} x\right]^{-\frac{\nu_{1}+\nu_{2}}{2}} \end{aligned}$	$x \in \mathbb{R}_{+}$	$\frac{\nu_{2}}{\nu_{2}-2} *$	$\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{2\left(\nu_{1}\right.}{\nu_{1}}$	$\left.\nu_{2}-2\right)^{*}$
Student t	$t(\nu)$	$f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\pi \nu}}\left[1+x^{2} / \nu\right]^{-(\nu+1) / 2}$	$x \in \mathbb{R}$	0^{*}	$\nu /(\nu-2)^{*}$	
Uniform	Un (a, b)	$f(x)=\frac{1}{b-a}$	$x \in(a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$	
Weibull	We (α, β)	$f(x)=\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_{+}$	$\frac{\Gamma\left(1+\alpha^{-1}\right)}{\beta^{1 / \alpha}}$	$\frac{\Gamma(1+2 / \alpha)-\Gamma^{2}(1+1 / \alpha)}{\beta^{2 / \alpha}}$	

[^0]: ${ }^{1}$ For counter-examples, you might use the σ-algebras $\mathcal{F}_{n}:=\sigma\left\{\left(0, i / 2^{n}\right]: 0 \leq i \leq 2^{n}\right\}$

