Final Examination

STA 711: Probability & Measure Theory

Saturday, 2015 Dec 12, 2:00 – 5:00 pm

This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever, possible **simplify**.

Good luck.

1.	/20	5.	/20
2.	/20	6.	/20
3.	/20	7.	/20
4.	/20	8.	/20
	/80		/80
Total:			/160

Print Name:

Problem 1: Let $Z \sim No(0, 1)$ and set $X := Z^2$, $\mathcal{G} := \sigma(Z)$, $\mathcal{H} := \sigma(X)$.

a) (5) Find $a, b \in \mathbb{R}$ such that the random variable Y := a + bZ is the orthogonal projection of X onto the span of Z, *i.e.*, satisfies

 $\mathsf{E}(X - Y)Z = 0$ and $\mathsf{E}(X - Y)1 = 0$ $Y = \underbrace{\qquad}_{a} + \underbrace{\qquad}_{b} Z$

b) (5) Find the conditional expectation of X, given $\mathcal{G} = \sigma(Z)$:

 $\mathsf{E}[X \mid \mathcal{G}] = _$

c) (5) Find the conditional expectation of Z, given $\mathcal{H} = \sigma(X)$:

 $\mathsf{E}[Z \mid \mathcal{H}] = _$

d) (5) Give an event $A \in \mathcal{G} = \sigma(Z)$ that is not in $\mathcal{H} = \sigma(X)$, if possible, and an event $B \in \mathcal{H}$ that is not in \mathcal{G} , if possible. If not possible, explain why.

 $\mathcal{G} \backslash \mathcal{H} \ni A = \underline{\qquad} \qquad \qquad \mathcal{H} \backslash \mathcal{G} \ni B = \underline{\qquad}$

Problem 2: Let $X_n \to X$ pr. for some $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$, and let $Y \in L_2(\Omega, \mathcal{F}, \mathsf{P})$. For each part below answer "Yes" or "No".

If Yes, indicate which theorem best justifies your answer by selecting **Fat**ou's Lemma, Lebesgue's **D**ominated or **M**onotone **C**onvergence **T**heorems, the **B**orel/**C**antelli lemma, **Fub**ini's Theorem, or the inequalities of **Jen**sen, **Min**kowski, **Hö**lder, or **Mar**kov. No need to show work.

- a) If $|X_n|^{1/2} \leq Y$ a.s., does $X_n \to X$ in L_1 ? \bigcirc No \bigcirc Yes, by: \bigcirc Fat \bigcirc DCT \bigcirc MCT \bigcirc B/C \bigcirc Fub \bigcirc Jen \bigcirc Min \bigcirc Höl \bigcirc Mar
- b) If $X_n \nearrow X \leq Y$, does $X_n \to X$ in L_1 ? \bigcirc No \bigcirc Yes, by: \bigcirc Fat \bigcirc DCT \bigcirc MCT \bigcirc B/C \bigcirc Fub \bigcirc Jen \bigcirc Min \bigcirc Höl \bigcirc Mar
- c) If $X_n \leq Y$, is $\mathsf{E}[X] \geq \limsup \mathsf{E}[X_n]$? \bigcirc No \bigcirc Yes, by: \bigcirc Fat \bigcirc DCT \bigcirc MCT \bigcirc B/C \bigcirc Fub \bigcirc Jen \bigcirc Min \bigcirc Höl \bigcirc Mar
- d) If $\sum_{n} \mathbf{1}_{\{X^2 > n\}} < \infty$ *a.s.*, is $X \in L_2$? \bigcirc No \bigcirc Yes, by: \bigcirc Fat \bigcirc DCT \bigcirc MCT \bigcirc B/C \bigcirc Fub \bigcirc Jen \bigcirc Min \bigcirc Höl \bigcirc Mar
- e) If $(\forall \epsilon > 0) \sum \mathsf{P}[|X_n| > \epsilon] < \infty$, does $X_n \to 0$ a.s.? ONO OYes, by: OFat ODCT OMCT OB/C OFub OJen OMin OHöl OMar

Problem 3: Let $\Omega := \{0, 1, 2, 3\}$ with probability assignment $\mathsf{P}[E] := \sum_{\omega \in E} 2^{\omega}/15$ for $E \in \mathcal{F} := 2^{\Omega}$. Consider events $A := \{0, 1\}$ and $B := \{0, 2\}$, and random variables

 $W(\omega) = \omega$ $X(\omega) = 2^{\omega}$ $Y(\omega) = \mathbf{1}_A(\omega)$ $Z(\omega) = \mathbf{1}_B(\omega)$

a) (5) Find the expectation of each RV:

 $\mathsf{E}W = _$ $\mathsf{E}X = _$ $\mathsf{E}Y = _$ $\mathsf{E}Z = _$

b) (5) Are $\sigma(Y)$ and $\sigma(Z)$ independent? \bigcirc Yes \bigcirc No Why?

c) (5) How many events are in the σ -algebra $\sigma(Y, Z)$ generated by Y and Z? You need not enumerate them.

d) (5) Find the conditional expectation $\mathsf{E}[W \mid Y]$.

Problem 4: Let $\{X_n\}$ and Y be real-valued random variables on $(\Omega, \mathcal{F}, \mathsf{P})$ and for $n, k \in \mathbb{N}$ set $A_{n,k} := \{\omega : |X_n(\omega) - Y(\omega)| > \frac{1}{k}\}.$

a) (5) Give the exact conditions on $A_{n,k}$ for $X_n \to Y$ a.s.

b) (5) Give the exact conditions on $A_{n,k}$ for $X_n \to Y pr$.

c) (5) Use your expressions above to prove that almost-sure convergence implies convergence in probability.

d) (5) Prove that $\sin(X_n) \to \sin(Y)$ in $L_1(\Omega, \mathcal{F}, \mathsf{P})$ if $X_n \to Y$ a.s.

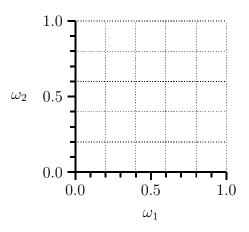
Problem 5: Let $\Omega = (0, 1]^2 = \{(\omega_1, \omega_2) : 0 < \omega_j \leq 1\}$ with Lebesgue measure P on the Borel sets \mathcal{F} , and consider the random variables

$$X(\omega) := \omega_1 \qquad Y(\omega) := \omega_2 \qquad R(\omega) := \left(\omega_1^2 + \omega_2^2\right)^{1/2} \qquad \Theta(\omega) := \arctan \omega_2/\omega_1$$

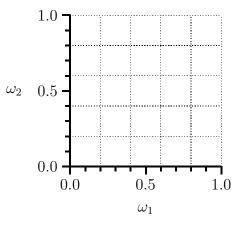
5

(so $\omega_2/\omega_1 = \tan\Theta$, with $0 < \Theta \le \pi/2$)

a) (4) Sketch an event $A \in \sigma(R)$ that is not in $\sigma(X)$, $\sigma(Y)$, or $\sigma(\Theta)$.



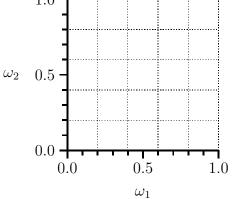
b) (4) Sketch an event $B \in \sigma(\Theta)$ that is not in $\sigma(X)$, $\sigma(Y)$, or $\sigma(R)$.

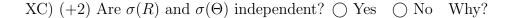


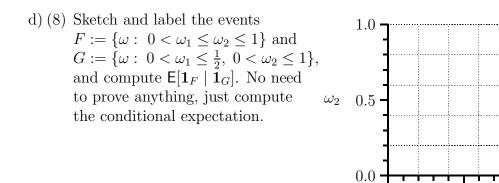
Exam ends: 5pm

Problem 5 (cont'd): Recall $\Omega = (0, 1]^2$ with Lebesgue measure

c) (4) Sketch and label **independent** events $D \in \sigma(R)$ and $E \in \sigma(\Theta)$ that are non-trivial–*i.e.*, have probabilities $0 < \mathsf{P}(D), \mathsf{P}(E) < 1$.







 $\mathsf{E}[\mathbf{1}_F \mid \mathbf{1}_G] =$

Exam ends: 5pm

0.5

 ω_1

0.0

1.0

Problem 6: Let $\{A_n\}$ be independent events on some probability space $(\Omega, \mathcal{F}, \mathsf{P})$ with $\mathsf{P}(A_n) = 2^{-n}$ for $n \in \mathbb{N}$. Fix $\alpha > 0$ and set

$$X_n := \alpha^n \mathbf{1}_{A_n}.$$

In d) and e), "converge" means "converge to some finite random variable".

a) (4) For which (if any) $\alpha > 0$ is $\{X_n\}$ uniformly bounded in L_1 ? Why?

b) (4) For which (if any) $\alpha > 0$ is $\{X_n\}$ uniformly bounded in L_4 ? Why?

c) (4) For which (if any) $\alpha > 0$ is $\{X_n\}$ uniformly bounded in L_{∞} ? Why?

d) (4) For which (if any) $\alpha > 0$ does $\sum_{n \in \mathbb{N}} X_n$ converge *a.s.*? Why?

e) (4) For which (if any) $\alpha > 0$ does $\sum_{n \in \mathbb{N}} X_n$ converge in L_1 ? Why?

Problem 7: Let $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$ be σ -fields on the set $\Omega = (0, 1]$, and let Y be a \mathcal{G} -measurable random variable.

a) (10) Does it follow that Y is also \mathcal{H} -measurable? \bigcirc Yes \bigcirc No If "Yes", give a proof; if "No", give a counter-example¹.

b) (10) Does it follow that Y is also \mathcal{F} -measurable? \bigcirc Yes \bigcirc No If "Yes", give a proof; if "No", give a counter-example¹.

¹For counter-examples, you might use the σ -algebras $\mathcal{F}_n := \sigma \{(0, i/2^n] : 0 \le i \le 2^n\}$

Problem 8: Let $\{X, Y, Z\}$ and $\{X_n\}$ be RVs on the same probability space $(\Omega, \mathcal{F}, \mathsf{P})$. Choose True or False below; no need to explain (unless you can't resist). Each is 2pt.

- a) T F If $\mathsf{E}[\exp(X)] < \infty$ then also $\mathsf{E}|X| < \infty$.
- b) **T** F If $X_n \to X$ pr. and if Ω is countable then $X_n \to X$ a.s.

c) T F If X, Y are independent and both are in L_2 then the product XY is in L_2 too.

d) T F If Z = g(X, Y) for some Borel function $g : \mathbb{R}^2 \to \mathbb{R}$ then $\sigma(Z) \subseteq \sigma(X, Y)$.

e) T F If the events A := [X < x] and B := [Y > y] are independent for each $x, y \in \mathbb{R}$ then X, Y are independent RVs.

f) $\mathsf{T} \mathsf{F}$ If $\sigma(X) \perp \sigma(Y)$ and $X, Y \in L_1$ then $\mathsf{E}[X \mid Y]$ is the constant random variable with value $\mathsf{E}[X]$.

g) **T** F If the sum $\sum_{n} \mathsf{P}(A_n) < \infty$ for the events $A_n := [|X| > n]$, then $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$.

h) T F If $X, Y \in L_6$ then $XY \in L_3$ with $||XY||_3 \le ||X||_6 ||Y||_6$.

i) T F Let $\phi(\omega) := \mathsf{E}[e^{i\omega X}]$ and $\psi(\omega) := \mathsf{E}[e^{i\omega Y}]$ be the ch.f.s for X and Y. Then the ch.f. for Z := X - Y is $\phi(\omega)/\psi(\omega)$ if X, Y are independent.

j) T F If $P[|X| > t] \ge P[|Y| > t]$ for each t > 0 then $||X||_2 \ge ||Y||_2$.

Fall 2015

Exam ends: 5pm

Blank Worksheet

Another Blank Worksheet

Name	Notation	$\mathbf{pdf}/\mathbf{pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha+\beta}$	$rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	npq	(q = 1 - p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	$lpha/\lambda^2$	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q = 1 - p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
HyperGeo.	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1{-}P) \frac{N{-}n}{N{-}1}$	$(P = \frac{A}{A+B})$
Logistic	$Lo(\mu,\beta)$	$f(x) = rac{e^{-(x-\mu)/eta}}{eta [1+e^{-(x-\mu)/eta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu + \sigma^2/2}$	$e^{2\mu+\sigma^2} \left(e^{\sigma^2} - 1 \right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	lpha q/p	$lpha q/p^2$	(q = 1 - p)
		$f(y) = {\binom{y-1}{y-\alpha}} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	lpha/p	$lpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$	$x \in \mathbb{R}_+$	$\frac{\epsilon}{\alpha-1}^*$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}^*$	
		$f(y) = \alpha \epsilon^{\alpha} / y^{\alpha + 1}$	$y\in(\epsilon,\infty)$	$\frac{\epsilon \alpha}{\alpha - 1}^*$	$\frac{\epsilon^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)}^*$	$(y = x + \epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
Snedecor F	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1 / \nu_2)^{\nu_1 / 2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2 - 2}^*$	$\left(\frac{\nu_2}{\nu_2-2}\right)^2 \frac{2(\nu_1+\nu_2)}{\nu_1(\nu_2-2)}$	$(-\nu_2-2) + (\nu_2-4)$
		$x^{\frac{\nu_1-2}{2}} \left[1+\frac{\nu_1}{\nu_2}x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0*	$ u/(\nu-2)^* $	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	$We(\alpha,\beta)$	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha) - \Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	