Midterm Examination II

STA 711: Probability & Measure Theory Wednesday, 2016 Nov 16, 1:25 – 2:40pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever possible, **Simplify**.

Good luck!

|--|--|

1.	/20
2.	/20
3.	/20
4.	/20
5.	/20
Total:	/100

Problem 1: Let $\{X_n\}_{n\in\mathbb{N}} \stackrel{\text{ind}}{\sim} \mathsf{Ex}(n^2)$ be independent exponentially-distributerd random variables that satisfy $\mathsf{P}[X_n>x] = \exp(-n^2x)$ for x>0, and set $S_n:=\sum_{m=1}^n X_m$.

a) (5) Does S_n converge in L_1 ? \bigcirc Yes \bigcirc No Why?

b) (5) Does S_n converge in L_2 ? \bigcirc Yes \bigcirc No Why?

c) (5) Does X_n converge in L_{∞} ? \bigcirc Yes \bigcirc No Why?

d) (5) Does X_n converge almost-surely? \bigcirc Yes \bigcirc No Why?

e) (XC) Does S_n converge almost-surely? \bigcirc Yes \bigcirc No Why?

Problem 2: Let $(\Omega, \mathcal{F}, \mathsf{P})$ be $\Omega = (0, 1]$ with the Borel sets and Lebesgue measure, and let $\{U_n\} \stackrel{\text{iid}}{\sim} \mathsf{Un}(0,1)$ be iid standard uniform random variables on $(\Omega, \mathcal{F}, \mathsf{P})$. In each part below, indicate in which (if any) sense(s) the sequence $\{X_n\}$ converges to zero. No explanations are necessary.

a) (5)
$$X_n := 2^n \mathbf{1}_{\{0 < \omega \le 4^{-n}\}}$$
: $\bigcirc a.s. \bigcirc pr. \bigcirc L_1 \bigcirc L_2 \bigcirc L_\infty$

$$\bigcirc a.s. \bigcirc pr.$$

$$\bigcirc L_1$$

$$\int L_2 \quad \bigcirc L_\infty$$

b) (5)
$$X_n := \sqrt{n} \mathbf{1}_{\{U_n < 1/n^2\}}$$
: $\bigcirc a.s. \bigcirc pr. \bigcirc L_1 \bigcirc L_2 \bigcirc L_\infty$

$$\bigcap a.s.$$

$$\bigcirc pr$$
.

$$\bigcirc L_1$$

$$)L_2 \bigcirc L_3$$

c) (5)
$$X_n := U_n^{-1} \mathbf{1}_{\{U_n < 1/n\}}$$
: $\bigcirc a.s. \bigcirc pr. \bigcirc L_1 \bigcirc L_2 \bigcirc L_\infty$

$$\bigcirc a$$

$$\bigcirc pr$$
.

$$\bigcirc L_{\infty}$$

d) (5)
$$X_n := 1/(nU_n)$$
: $\bigcirc a.s. \bigcirc pr. \bigcirc L_1 \bigcirc L_2 \bigcirc L_\infty$

$$\bigcirc a.s.$$

$$r$$
.

$$\bigcirc L$$

$$\bigcirc L_{\circ}$$

Problem 3: Let $\{U_i\} \stackrel{\text{iid}}{\sim} \mathsf{Un}(0,1)$ be iid standard Uniform random variables, and set $X_i := U_i^{-1/4}$. Show your work in finding:

a) (4) Show that the pdf for X_i is $f(x) = 4x^{-5}\mathbf{1}_{\{x>1\}}$:

b) (4) Find $||X_i||_p$ for every $0 . <math>||X_i||_p =$

c) (4) Set $S_n := \sum_{i \leq n} X_i$. Find sequences a_n and b_n , if possible, so that

$$\frac{S_n - a_n}{b_n} \Rightarrow \mathsf{No}(0, 1)$$

has approximately a standard Normal distribution for large n. Justify. $a_n = b_n =$

Problem 3 (cont'd): Still $X_i := U_i^{-1/4}$ for $\{U_i\} \stackrel{\text{iid}}{\sim} \mathsf{Un}(0,1)$.

d) (4) Set $T_n := \sum_{i \leq n} X_i^2$. Find sequences c_n and d_n , if possible, so that

$$\frac{T_n - c_n}{d_n} \Rightarrow \mathsf{No}(0, 1)$$

has approximately a standard Normal distribution for large n. Justify.

$$c_n =$$
 $d_n =$

e) (4) Find and justify the indicated limits:

$$\lim_{n \to \infty} \frac{S_n}{n} =$$

$$\lim_{n \to \infty} \frac{T_n}{n} =$$

Problem 4: The random variables $X, Y \stackrel{\text{iid}}{\sim} \mathsf{Un}(0,1]$, while

$$V := \mathbf{1}_{\{X \le 0.25\}} \qquad Z := \mathbf{1}_{\{X \le Y^2\}}$$

(and simplify!):

a) (4) Fill in¹ the following table of probabilities:

	V = 0	V = 1
Z = 0		
Z=1		

b) (6) $E[Z \mid V] =$

¹Remember: Simplify, with no unreduced fractions

Problem 4 (cont'd): Still $X, Y \stackrel{\text{iid}}{\sim} \mathsf{Un}(0, 1], \ V := \mathbf{1}_{\{X \leq 0.25\}}, \ Z := \mathbf{1}_{\{X \leq Y^2\}}.$

Find:

c) (5)
$$\mathsf{E}[X \mid V] =$$

d) (5)
$$E[Z \mid X] =$$

Problem 5: True or false? Circle one; each answer is worth 2 points. No explanations are needed, but you can give one if you think a question seems ambiguous or tricky. All random variables are real on some $(\Omega, \mathcal{F}, \mathsf{P})$.

- a) T F If $\{X, Y, Z\}$ are iid & positive then $W := \frac{Z}{X+Y+Z} \in L_1$ and $\mathsf{E}W = 1/3$.
 - b) TF If X has a continuous pdf with f(0) > 0 then $\frac{1}{X} \notin L_1$.
- c) TF If $\{X_n\}$ are iid and L_{∞} with mean $\mu = \mathsf{E} X_n$ then for some c>0 and all $\epsilon>0$ and $n\in\mathbb{N},\ \mathsf{P}[(\bar{X}_n-\mu)>\epsilon]\leq \exp(-c\,n\,\epsilon^2).$
 - d) TF If $||X_n||_2 \to 0$ then also $\mathsf{E}\sqrt{|X_n|} \to 0$.
- e) T F For the Cauchy distribution, $\mathsf{E}[\exp(i\omega X)]$ is infinite for all $\omega \in \mathbb{R}$ except for $\omega = 0$ because the Cauchy pdf has heavy tails.
 - f) TF If $\mathcal{G} \subset \mathcal{F}$ and $Y = \mathsf{E}[X \mid \mathcal{G}]$ with $X \in L_1$, then $\mathsf{E}[X] = \mathsf{E}[Y]$.
 - g) TF If $\mathcal{G} \subset \mathcal{F}$ and $Y = \mathsf{E}[X \mid \mathcal{G}]$ with $X \in L_2$, then $\mathsf{V}[X] = \mathsf{V}[Y]$.
 - h) TF Every ch.f. $\phi(\omega) = \mathbb{E}[e^{i\omega X}]$ is continuously differentiable.
- i) TF X and (-X) have the same distribution if and only if $(\forall \omega)\phi_X(\omega) = \phi_X(-\omega)$.
 - j) TF If $\{X_i\}$ are iid with ch.f. $\phi(\omega)$, then $\prod_{i=1}^n X_i$ has ch.f. $\phi(\omega)^n$.

Blank Worksheet

Another Blank Worksheet

Name	Notation	$\mathrm{pdf/pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0, 1)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	n p	n p q	(q=1-p)
${\bf Exponential}$	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	α/λ	$lpha/\lambda^2$	
${\bf Geometric}$	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
${\bf HyperGeo.}$	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
$\mathbf{Logistic}$	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu + \sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	$\alpha q/p$	$\alpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	α/p	$\alpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$	$x \in \mathbb{R}_+$	$\frac{\epsilon}{\alpha-1}$ *	$\frac{\epsilon^2\alpha}{(\alpha-1)^2(\alpha-2)}^*$	
		$f(y) = \alpha \epsilon^{\alpha} / y^{\alpha + 1}$	$y \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$ *	$\frac{\epsilon^2\alpha}{(\alpha-1)^2(\alpha-2)}^*$	$(y = x + \epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
Snedecor F	$F(u_1, u_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2 - 2} *$	$\left(\frac{\nu_2}{\nu_2-2}\right)^2 \frac{2(\nu_1-\nu_1)}{\nu_1(\nu_1-\nu_2)}$	$\frac{(-\nu_2-2)}{(\nu_2-4)}^*$
		$x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
$\mathbf{Student}\ t$	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0*	$\nu/(\nu-2)^*$	
$\mathbf{Uniform}$	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	$We(\alpha,\beta)$	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha) - \Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	