Midterm Examination II

STA 711: Probability & Measure Theory Wednesday, 2017 Nov 15, 1:25 – 2:40pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever possible, **Simplify**.

Good luck!

|--|--|

1.	/20
2.	/20
3.	/20
4.	/20
5.	/20
Total:	/100

Problem 1: Let X and Y be independent, each with mean $\mathsf{E} X = \mathsf{E} Y = 2$, but not identically distributed— X has a Geometric distribution¹ with pmf $\mathsf{P}[X=x] = p\,(1-p)^x$ for $x \in \mathbb{Z}_0 = \{0,1,\ldots\}$ for some 0 , and <math>Y has an Exponential distribution with pdf $\lambda e^{-\lambda y} \mathbf{1}_{\{y>0\}}$ for some $\lambda > 0$. Find the indicated quantities (as **numeric values**). Show your work.

a) (4)
$$P[X \ge 1] =$$

$$P[Y \ge 1] =$$

b) (4)
$$P[X = 1] =$$

$$P[Y = 1] =$$

c) (4)
$$P[Y \ge X] =$$

$$V[X - Y] =$$

¹Common distributions' pdfs/pmfs, means, variances, etc. are attached as page 10.

Problem 1 (cont'd): Still $X \perp \!\!\!\perp Y$ and $\mathsf{E} X = \mathsf{E} Y = 2$, with $X \sim \mathsf{Ge}(p)$ and $Y \sim \mathsf{Ex}(\lambda)$ for some $p \in (0,1)$ and $\lambda > 0$:

d) (4)
$$\mathsf{E}\exp(i\omega X) =$$

$$\mathsf{E}\exp(i\omega Y) = \qquad (\omega \in \mathbb{R})$$

e) (4)
$$E(1/X!) =$$

$$\mathsf{E} Y^5 =$$

Problem 2: Let $\{X_n\} \stackrel{\text{iid}}{\sim} \mathsf{Ex}(1)$ be iid unit-rate exponential random varaiables on some space $(\Omega, \mathcal{F}, \mathsf{P})$. In each part below, indicate in which (if any) sense(s) the sequence $\{Y_n\}$ converges to zero. No explanations are necessary.

a) (5)
$$Y_n := X_n/n$$
:

$$\bigcirc a.s. \bigcirc pr. \bigcirc L_1 \bigcirc L_2 \bigcirc L_\infty$$

b) (5)
$$Y_n := \left\{ \prod_{1 \le j \le n} X_j \right\}^{1/n} : \bigcirc a.s. \bigcirc pr. \bigcirc L_1 \bigcirc L_2 \bigcirc L_\infty$$

c) (5)
$$Y_n := \frac{1}{n} \sum_{1 \le j \le n} (X_j - 1)$$
: $\bigcirc a.s.$ $\bigcirc pr.$ $\bigcirc L_1$ $\bigcirc L_2$ $\bigcirc L_\infty$

d) (5)
$$Y_n := \min_{1 \le j \le n} X_j$$
: $\bigcirc a.s. \bigcirc pr. \bigcirc L_1 \bigcirc L_2 \bigcirc L_\infty$

e) (XC) Prove that
$$Y_n := \left\{ \prod_{1 \leq j \leq n} X_j \right\} \to 0$$
 a.s. but not in L_1 .

Problem 3: Let $\{X_n\} \stackrel{\text{ind}}{\sim} \mathsf{Pa}(n,1)$ be independent Pareto random variables with $\mathsf{P}[X_n > x] = x^{-n}$ for x > 1 and $n \in \mathbb{N}$. Show your work in finding:

a) (4) For every
$$0 and $n \in \mathbb{N}$, find: $||X_n||_p =$$$

b) (4) For
$$n \neq m$$
, find: $P[X_m > X_n] =$

c) (4) Does
$$X_n$$
 converge almost-surely? Prove your answer. \bigcirc Yes \bigcirc No Why?

Problem 3 (cont'd): Still $\{X_n\} \stackrel{\text{ind}}{\sim} \mathsf{Pa}(n,1) \text{ w} / \mathsf{P}[X_n > x] = x^{-n} \text{ for } x > 1.$

d) (4) Set $T_n := \prod_{j=1}^n X_j$ and $Z_n := \prod_{j=1}^n X_{j^2}$. Show that $T_n \to \infty$ a.s. but $Z_n \to Z$ pr. for some finite RV Z.

e) (4) Set $Y_n := (X_n - 1)/X_n$. Does $\sum_{n=1}^{\infty} Y_n$ converge in L_1 ? \bigcirc Yes \bigcirc No If so, prove it; if not, find a subsequence n_k s.t. $\sum_{k=1}^{\infty} Y_{n_k}$ converges.

Problem 4: If X, Y, and Z are i.i.d. L_1 with common mean μ , ch.f. $\phi(\omega)$, and sums S := X + Y + Z and T := Y + Z, find:

a) (4)
$$E[S \mid Y] =$$

b) (4)
$$E[Y \mid S] =$$

c) (4)
$$E[X \mid Y] =$$

d) (4)
$$E[X + Y \mid T] =$$

e) (4)
$$\mathsf{E}[e^{i\omega S} \mid Y] =$$

- **Problem 5**: True or false? Circle one; each answer is worth 2 points. No explanations are needed, but you can give one if you think a question seems ambiguous or tricky. All random variables are real on some $(\Omega, \mathcal{F}, \mathsf{P})$.
- a) TF For the Cauchy distribution, $\mathsf{E}[\exp(tX)]$ is infinite for all $t \in \mathbb{R}$ except for t=0 because the Cauchy pdf has heavy tails.
 - b) TF If $\{X_i\}$ are iid w/ch.f. $\phi(\omega)$, then $-\sum_{j=1}^n X_j$ has ch.f. $\phi(-\omega)^n$.
- c) TF If $\{X,Y,Z\}$ are iid and $\mathsf{P}[X < Y < Z] = 1/6$ then X has a continuous distribution.
- d) TF If X and Y are independent with pdfs f(x) and g(y), then $Z := X \cdot Y$ has pdf h(z) := f(z) g(z).
- e) TF If $\{X_n\}$ are iid and L_{∞} with mean $\mu = \mathsf{E} X_n$ then $(\forall \epsilon > 0) \ (\exists c_{\epsilon} > 0) \ (\forall n \in \mathbb{N}) \ \mathsf{P}[(\bar{X}_n \mu) > \epsilon] \le \exp(-n \, c_{\epsilon}).$
 - f) TF If $\mathsf{E}|X_n|^4 \to 0$ then also $\mathsf{E}|X_n|^{\frac{1}{4}} \to 0$.
- g) TF If $\mathcal{G} \subset \mathcal{F}$ and $Y = \mathsf{E}[X \mid \mathcal{G}]$ with $0 \leq X \in L_1$, then $||X||_1 = ||Y||_1$.
- h) TF If $\mathcal{G} \subset \mathcal{F}$ and $Y = \mathsf{E}[X \mid \mathcal{G}]$ with $0 \leq X \in L_2$, then $||X||_2 = ||Y||_2$.
 - i) TF Every ch.f. $\phi(\omega) = \mathsf{E}[e^{i\omega X}]$ is a continuous function of ω .
 - j) TF If $X_n \to X$ in L_1 then, for some $n_k \to \infty$, $X_{n_k} \to X$ a.s.

Blank Worksheet

Another Blank Worksheet

Name	Notation	$\mathrm{pdf/pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	n p	npq	(q=1-p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	α/λ	α/λ^2	
${\bf Geometric}$	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
${\bf HyperGeo.}$	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
$\operatorname{Logistic}$	$Lo(\mu,eta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_{+}$	$e^{\mu + \sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	$\alpha q/p$	$\alpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	α/p	$\alpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$	$x \in \mathbb{R}_{+}$	$\frac{\epsilon}{\alpha-1}$ *	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}^*$	
		$f(y) = \alpha \epsilon^{\alpha} / y^{\alpha + 1}$	$y \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$ *	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}^*$	$(y = x + \epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
${\bf Snedecor}\ F$	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2 - 2} *$	$\left(\frac{\nu_2}{\nu_2 - 2}\right)^2 \frac{2(\nu_1 + \nu_2)^2}{\nu_1(\nu_2)^2}$	$(-\frac{\nu_2-2)}{\nu_2-4)}^*$
		$x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0*	$\nu/(\nu-2)^*$	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	We(lpha,eta)	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\tfrac{\Gamma(1+2/\alpha)-\Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	