Final Examination

STA 711: Probability & Measure Theory

Monday, 2018 Dec 17, $2:00 - 5:00 \,\mathrm{pm}$

This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever, possible **simplify**.

Good luck.

1.	/20	5.	/20
2.	/20	6.	/20
3.	/20	7.	/20
4.	/20	8.	/20
	/80		/80
Total:			/160

Problem 1: Let $\{A_n\} \subset \mathcal{F}$ be independent events with probabilities $P[A_n] = 1/n$, and let $X_n := \mathbf{1}_{A_n}$ be their indicator RV s.

a) (5) Does $\sum_n X_n$ converge a.s. to an \mathbb{R} -valued limit X? \bigcirc Yes \bigcirc No Why?

b) (5) Does $\sum_n X_{n^2}$ converge a.s. to an \mathbb{R} -valued limit X? \bigcirc Yes \bigcirc No Why?

c) (5) Does $\sum_n X_{n^2}$ converge in L_1 to an \mathbb{R} -valued limit X? \bigcirc Yes \bigcirc No Why?

d) (5) Does $\sum_n n X_{2^n}$ converge in L_p to an \mathbb{R} -valued limit X for each $0 ? <math>\bigcirc$ Yes \bigcirc No Why?

Problem 2: Let $\{X_n\}$ and Y be real-valued random variables on $(\Omega, \mathcal{F}, \mathsf{P})$ such that $X_n \to Y$ a.s. For each $n \in \mathbb{N}$, $\mathsf{E}[X_n^2] \le 100$.

a) (5) Does it follow that $Y \in L_2$? \bigcirc Yes \bigcirc No Why?

b) (5) Does it follow that $X_n \to Y$ in L_2 ? \bigcirc Yes \bigcirc No Proof or counter-example:

c) (5) Is $P[|X_n - Y| > \epsilon]$ summable for each $\epsilon > 0$? \bigcirc Yes \bigcirc No Proof or counter-example:

d) (5) Is $P[|X_1 - Y|^2 > n\epsilon]$ summable for each $\epsilon > 0$? \bigcirc Yes \bigcirc No Proof or counter-example:

Problem 3: Let $X \sim \mathsf{Ex}(\lambda)$ and $Y \sim \mathsf{Ge}(p)$ be independent, with pdf $f(x) = \lambda e^{-\lambda x} \mathbf{1}_{\{x>0\}}$ and pmf $p(y) = p q^y$, $y \in \mathbb{N}_0$, respectively, where q := 1 - p.

a) (5) Find P[Y > X] =

b) (5) Is the distribution $\mu(dz)$ of Z:=X+Y \bigcirc Absolutely Continuous, \bigcirc Discrete, or \bigcirc Neither? Give its survival function at $all\ z\in\mathbb{R}$. $\bar{F}(z):=\mathsf{P}[Z>z]=$

Problem 3 (cont'd): Still $X \sim \mathsf{Ex}(\lambda) \perp \!\!\! \perp Y \sim \mathsf{Ge}(p)$ and Z := X + Y.

c) (6) Find the characteristic functions of all three RVs:

$$\chi_X(\omega) =$$

$$\chi_Y(\omega) =$$

$$\chi_Z(\omega) =$$

d) (4) Find the indicated conditional expectation: $\mathsf{E}[Z\mid X] =$

Problem 4: Let $Z \sim No(0,1)$ and set $X := (Z \vee 0)$, the maximum of Z and zero.

a) (5) Is the distribution $\mu(dx)$ of $X := (Z \vee 0) \bigcirc$ Absolutely Continuous, \bigcirc Discrete, or \bigcirc Neither? Give its survival function at all $x \in \mathbb{R}$, or some other representation of its distribution.

 $\bar{F}(x) := P[X > x] =$

b) (5) Find the moment generating function (MGF) of X. Your expression may include the normal CDF $\Phi(\cdot)$.

 $M(t) := \mathsf{E}[e^{tX}] =$

- c) (5) Find the mean of X (use any method you like). $\mathsf{E}[X] =$
- d) (5) Every MGF satisfies M(0) = 1. Is there any other $t^* \neq 0$ for which this $M(t^*) = 1$? Why, or why not?

Problem 5: Let $\{\xi_n\} \sim Po(n^2)$.

a) (5) Find the log ch.f.¹ for $X_n:=\xi_n/n^2$: $\phi_n(\omega)=\log\mathsf{E}\big[e^{i\omega X_n}\big]=$

b) (5) Show that $\phi_n(\omega)$ converges as $n \to \infty$, and find the limit $\phi(\omega)$. What distribution has ch.f. $\exp(\phi(\omega))$?

¹Suggestion: First compute the ch.f. $\phi(\theta) := \mathsf{E}[e^{i\theta X}]$ for $X \sim \mathsf{Po}(\lambda)$.

Problem 5 (cont'd): Still $\{\xi_n\} \sim Po(n^2)$.

c) (5) Find the log ch.f. for $Y_n := (\xi_n/n) - n$: $\psi_n(\omega) =$

d) (5) Show that $\psi_n(\omega)$ converges as $n \to \infty$, and find the limit $\psi(\omega)$. Identify the limiting distribution of $\{Y_n\}$, which has ch.f. $\exp(\psi(\omega))$.

Problem 6: Let $X_0:=1$ and, for $n \in \mathbb{N}$, let $X_n=2X_{n-1}$ or $X_n=0$ with probability 1/2 each. Set $\tau:=\inf\{n: X_n=0\}$ and $\mathcal{F}_n:=\sigma\{X_j: 1\leq j\leq n\}$.

- a) (6) Prove that (X_n, \mathcal{F}_n) is a martingale (reminder: there are two conditions to verify).
 - b) (4) For each p > 0: is $\{X_n\}$ uniformly bounded in L_p ? If so, by what?
- c) (4) Does $\{X_n\}$ converge to some limit X_{∞} as $n \to \infty$? If so, to what limit, and in what sense(s)? If not, why not?
 - d) (4) Is τ in L_1 ? Prove it (and find $\mathsf{E}[\tau]$) or disprove it.
- e) (2) Find: $\mathsf{E}[X_{\tau}] = \qquad \qquad \mathsf{E}[X_{\tau \wedge 10}] =$

Problem 7: Let A, B, C be independent with probabilities a, b, c, respectively on $(\Omega, \mathcal{F}, \mathsf{P})$. Find:

a) (5)
$$P[A \cup B] =$$

b) (5)
$$P[A \cup B \mid B \cup C] =$$

c) (5)
$$P[A \cup B \cup C] =$$

d) (5)
$$P[A \mid A \cup B \cup C] =$$

Problem 8: True or false? Circle one, for 2 points each. No explanations are needed. All random variables are real on the same space $(\Omega, \mathcal{F}, \mathsf{P})$; ϕ, ψ are arbitrary Borel functions on \mathbb{R} .

- a) TF If $X_n \to X$ a.s. then $\liminf_{n\to\infty} X_n = X$.
- b) TF If $X = \phi(Z)$ and $Y = \psi(Z)$ then X, Y can't be independent.
- c) TF If $g(\cdot)$ is continuous and $X_n \to X$ (pr.) then $g(X_n) \to g(X)$ (pr.).
- d) T F If $X \perp \!\!\! \perp Y$ and ϕ, ψ are bounded functions $\mathbb{R} \to \mathbb{R}$ then $\mathsf{E}[\exp(\phi(X) + \psi(Y))] = \mathsf{E}[\exp(\phi(X))] \cdot \mathsf{E}[\exp(\psi(Y))].$
 - e) TF If $A, B \in \mathcal{F}$ then $\sigma\{A, B\} = \sigma\{\mathbf{1}_A + 2\mathbf{1}_B\}$.
 - f) TF If $X \in L_1(\Omega, \mathcal{F}, \mathsf{P})$ and $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$ then $\mathsf{E}\big[\mathsf{E}[X \mid \mathcal{H}] \mid \mathcal{G}\big] = \mathsf{E}[X \mid \mathcal{G}]$
- g) TF If $\emptyset \neq \Lambda_1 \subsetneq \Lambda_2 \subsetneq \cdots \subsetneq \Lambda_n = \Omega$, then $\sigma\{\Lambda_j : 1 \leq j \leq n\}$ has 2^n elements.
- h) TF If probability measures P, Q agree on a field \mathcal{G}_0 then they agree on the σ -field $\mathcal{G} = \sigma(\mathcal{G}_0) \subset \mathcal{F}$ it generates.
 - i) TF If $0 \le X \in L_1$ then $Y := \log(1+X)$ satisfies $Y \in L_1$.
- j) TF If each $X_j \in L_{p_j}$ for some $\{p_j\} \subset \mathbb{R}_+$ and if $\sum p_j < \infty$ then $X_+ := \sum X_j$ converges in L_1 .

Fall 2018

Blank Worksheet

Another Blank Worksheet

Name	Notation	$\mathrm{pdf/pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	npq	(q=1-p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	α/λ^2	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
${\bf HyperGeo.}$	HG(n,A,B)	$f(x) = \frac{\binom{A}{x} \binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	nP	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
Logistic	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1 + e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	$\alpha q/p$	$\alpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	lpha/p	$\alpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$	$x \in \mathbb{R}_+$	$\frac{\epsilon}{\alpha-1}$ if $\alpha > 1$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$ if $\alpha > 2$	
		$f(y) = \alpha \epsilon^{\alpha} / y^{\alpha + 1}$	$y \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$ if $\alpha > 1$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$ if $\alpha > 2$	$(y = x + \epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
Snedecor F	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1 / \nu_2)^{\nu_1 / 2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2 - 2}$ if $\nu_2 > 2$	$\left(\frac{\nu_2}{\nu_2 - 2}\right)^2 \frac{2(\nu_1 + \nu_2)^2}{\nu_1(\nu_2)^2}$	$\frac{(2-2)}{(-4)}$ if $\nu_2 > 4$
		$x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2} x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	$t(\nu)$	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0 if $\nu > 1$	$\frac{\nu}{\nu-2}$ if $\nu>2$	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	We(lpha,eta)	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha)-\Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	