Midterm Examination I

STA 711: Probability & Measure Theory Wednesday, 2018 Oct 03, 1:25 – 2:40pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever possible, **Simplify**.

Good luck!

Print Name Clearly:	
i illi ivallie Oleany.	

1.	/20
2.	/20
3.	/20
4.	/20
5.	/20
Total:	/100

Version a

Problem 1: Let $\Omega = (0,1]$, $\mathcal{F} = \mathcal{B}(\Omega)$, and $\mathsf{P} = \lambda$ (Lebesgue measure), with random variables

$$X_n(\omega) := \sqrt{n} \mathbf{1}_{\{\omega < 1/n\}}$$
 $Y_n(\omega) := \frac{1}{2\sqrt{n\omega}}$

a) (6) Find the indicated expectations (simplify!):

$$\mathsf{E}[X_n] = \underline{\hspace{1cm}} \mathsf{E}[Y_n] = \underline{\hspace{1cm}}$$

b) (8) Prove that for each ω , $X_n \to 0$ and $Y_n \to 0$, as follows. For each $0 < \epsilon < 1$, find the smallest $N_{\epsilon}(\omega)$ such that:

$$n \ge N_{\epsilon} \Rightarrow |X_n(\omega)| \le \epsilon : N_{\epsilon}(\omega) =$$

$$n \ge N_{\epsilon} \Rightarrow |Y_n(\omega)| \le \epsilon : \quad N_{\epsilon}(\omega) = \underline{\hspace{1cm}}$$

Problem 1 (cont'd): Still $\Omega = (0, 1], \mathcal{F} = \mathcal{B}(\Omega), P = \lambda$, and

$$X_n(\omega) := \sqrt{n} \mathbf{1}_{\{\omega < 1/n\}}, \qquad Y_n(\omega) := \frac{1}{2\sqrt{n\omega}}$$

c) (6) For each $n \in \mathbb{N}$, find the indicated probabilities:

$$P[X_n \ge 10] = \underline{\hspace{1cm}}$$

$$P[Y_n \ge 10] = \underline{\hspace{1cm}}$$

$$\mathsf{P}[Y_n \ge X_n] = \underline{\hspace{2cm}}$$

Problem 2: Let $\Omega = (0,1]$, $\mathcal{F} = \mathcal{B}(\Omega)$, and $\mathsf{P} = \lambda$ (Lebesgue measure), with random variables

$$X_n(\omega) := \sqrt{n} \mathbf{1}_{\{\omega < 1/n\}}$$
 $Y_n(\omega) := \frac{1}{2\sqrt{n\omega}}$

a) (6) For which $0 is <math>X_n$ in L_p ? How about Y_n ? X_n :

 Y_n :

b) (8) Does the Dominated Convergence Theorem apply to X_n and Y_n ? If so, find a dominating RV $Z \in L_1$; if not, explain why. $X_n : \bigcirc$ Yes \bigcirc No Z =

 $Y_n: \bigcirc \text{ Yes } \bigcirc \text{ No } Z =$

c) (6) Does the Monotone Convergence Theorem apply to X_n and Y_n ? $X_n: \bigcirc$ Yes \bigcirc No Why?

 $Y_n: \bigcirc \text{ Yes } \bigcirc \text{ No } \text{ Why?}$

Problem 3: Let $\Omega := \{a, b, c, d\}$ with $\mathcal{F} := 2^{\Omega}$ and P that assigns probabilities 0.20, 0.40, and 0.10 respectively to the singleton sets $\{a\}$, $\{b\}$, $\{c\}$. Let X and Y be RVs given by the following table

	a	b	c	d
X:	5	0	1	1
Y:	7	2	7	2

a) (8) Are X and Y independent? Y N Why?

b) (6) Give the σ -algebras $\sigma(X)$ and $\sigma(Y)$ explicitly, by listing their members (no explanations needed): $\sigma(X) =$

$$\sigma(Y) =$$

c) (6) Describe the σ -algebra $\sigma(Z)$ for the RV Z:=X+Y. Justify your answer.

Problem 4: Let $(\Omega, \mathcal{F}, \mathsf{P})$ be the nonnegative integers $\Omega = \mathbb{N} := \{1, 2, 3, \dots\}$ with $\mathcal{F} = 2^{\Omega}$ and $\mathsf{P}[A] := \frac{90}{\pi^4} \sum_{\omega \in A} \omega^{-4}$ for $A \in \mathcal{F}$ (see footnote¹).

a) (2) Show that for any positive decreasing function $\phi : \mathbb{R} \to \mathbb{R}_+$,

$$\sum_{n=2}^{\infty} \phi(n) \le \int_{1}^{\infty} \phi(x) \, dx \le \sum_{n=1}^{\infty} \phi(n).$$

- b) (6) For p > 0, is the random variable $X(\omega) := \omega$ in $L_p(\Omega, \mathcal{F}, \mathsf{P})$? If this depends on p, explain.
- Yes No It Depends

Reasoning?

 $p \in \underline{\hspace{1cm}}$

c) (XC) If so, give an explicit upper bound for $||X||_p$.

 $||X||_p \leq \underline{\hspace{1cm}}$

¹Recall that $\zeta(2) = \sum_{n=1}^{\infty} n^{-2} = \pi^2/6$ and $\zeta(4) = \sum_{n=1}^{\infty} n^{-4} = \pi^4/90$

Problem 4 (cont'd): Still $\Omega = \mathbb{N}$, $\mathcal{F} = 2^{\Omega}$, and $P[A] := \frac{90}{\pi^4} \sum_{\omega \in A} \omega^{-4}$.

d) (6) For $n \in \mathbb{N}$ set $Y_n(\omega) := \omega^3 \mathbf{1}_{\{\omega \le n\}}$. Does the Dominated Convergence Theorem apply to $\{Y_n\}$? If so, tell what L_1 function Y dominates $\{Y_n\}$; if not, explain why. \bigcirc Yes \bigcirc No $Y(\omega) =$ Reasoning?

e) (6) For $n \in \mathbb{N}$ set $Z_n(\omega) := \omega^2 \mathbf{1}_{\{\omega \leq n\}}$. Does the Monotone Convergence Theorem apply to $\{Z_n\}$? If so, tell what MCT says and show why it applies; if not, explain why. \bigcirc Yes \bigcirc No Reasoning:

Problem 5: True or false? Circle one; each answer is worth 2 points. No explanations are needed, but you can give one if you think the question is ambiguous. All random variables are real on some $(\Omega, \mathcal{F}, \mathsf{P})$.

- a) TF If $A \subsetneq B$ (so $B \setminus A \neq \emptyset$) then P[A] < P[B].
- b) TF If $P[A] > P[B] > P[A \cap B] > 0$ then $P[A \mid B] > P[B \mid A]$.
- c) TF If $\{X,Y,Z\}$ are iid and $\mathsf{P}[X < Y < Z] = 1/6$ then X has a continuous distribution.
 - d) TF If P[Z > 0] = 1 then $E[Z] \cdot E[1/Z] \ge 1$.
 - e) T F Every σ -algebra is a π -system.
 - f) TF If $P[X_n \to X] = 1$ then $\cos(X_n) \to \cos(X)$ in L_2 .
- g) TF If $\mathsf{P}[X_n \to X] = 1$ and if $g: \mathbb{R} \to \mathbb{R}$ is Borel, then $\mathsf{P}[g(X_n) \to g(X)] = 1$.
- h) TF If $\sum P[A_n] < \infty$ then $P[\limsup A_n] = 0$, whether or not $\{A_n\}$ are independent.
- i) TF If $\{X_{\alpha}\}$ are independent and $\{g_{\alpha}\}$ are Borel then $\{g_{\alpha}(X_{\alpha})\}$ are independent too.
 - j) TF If $E|X|^p < \infty$ for all p > 0 then $X \in L_{\infty}$.

Blank Worksheet

Another Blank Worksheet

Name	Notation	$\mathrm{pdf}/\mathrm{pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	np	npq	(q=1-p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	α/λ^2	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
HyperGeo.	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
Logistic	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1 + e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 eta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	$\alpha q/p$	$\alpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	lpha/p	$\alpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$	$x \in \mathbb{R}_+$	$\frac{\epsilon}{\alpha - 1}$ if $\alpha > 1$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$ if $\alpha > 2$	
		$f(y) = \alpha \epsilon^{\alpha} / y^{\alpha + 1}$	$y \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$ if $\alpha > 1$	$\frac{\epsilon^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)}$ if $\alpha > 2$	$(y = x + \epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
${\bf Snedecor}\ F$	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2 - 2}$ if $\nu_2 > 2$	$\left(\frac{\nu_2}{\nu_2 - 2}\right)^2 \frac{2(\nu_1 + \nu_2)}{\nu_1(\nu_2)}$	$\frac{\nu_2 - 2)}{(-4)}$ if $\nu_2 > 4$
		$x^{\frac{\nu_1-2}{2}} \left[1+\frac{\nu_1}{\nu_2}x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0 if $\nu > 1$	$\frac{\nu}{\nu-2}$ if $\nu>2$	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	$We(\alpha,\beta)$	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+lpha^{-1})}{eta^{1/lpha}}$	$\frac{\Gamma(1+2/\alpha)-\Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	