Sta 711: Homework 5

Convergence

- 1. Let X be a strictly positive random variable. Show that:
 - (a) $\lim_{n\to\infty} n\mathsf{E}(\frac{1}{X}\mathbf{1}_{[X>n]}) = 0.$
 - (b) $\lim_{n\to\infty} n^{-1} \mathsf{E}(\frac{1}{X} \mathbf{1}_{[X>n^{-1}]}) = 0.$
- 2. Let $X \sim \mathsf{Un}(0,4]$ be uniformly distributed on the interval (0,4], and set Y := 1/X and $Z := \log(4Y)$. Suggestion: First find out what is the distribution of Z, by computing $\mathsf{P}[Z > z]$ for $z \in \mathbb{R}$. Use $\varphi(x) := |x|$ for the Markov inequality questions.
 - (a) What bound does Markov's inequality give for P[X > 3]?
 - (b) What bound does Chebychev's inequality give for P[|X-2| > 1]?
 - (c) What bound does Markov's inequality give for P[Y > 1]?
 - (d) What bound does Markov's inequality give for P[Z > 2]?
 - (e) What are the exact values of P[X > 3], P[|X 2| > 1], P[Y > 1], and P[Z > 2]?
- 3. Let A and B be events in $(\Omega, \mathcal{F}, \mathsf{P})$ with probabilities $a = \mathsf{P}(A)$ and $b = \mathsf{P}(B)$ respectively. Show that $\mathsf{P}(A \cap B) \leq \sqrt{ab}$.
- 4. Suppose $\{X_n\}$, X are real valued RVs defined on a probability space $(\Omega, \mathcal{F}, \mathsf{P})$ and that $X_n(\omega) \to X(\omega)$ for all $\omega \in \Omega$. Show that for every $\epsilon > 0$, there is an event Λ_{ϵ} with $\mathsf{P}(\Lambda_{\epsilon}) < \epsilon$ and

$$\sup_{\omega \in \Lambda_{\epsilon}^{c}} |X(\omega) - X_{n}(\omega)| \to 0 \quad \text{as } n \to \infty.$$

Thus the convergence is uniform except on an arbitrarily small set. (For more on this result, called Egorov's Theorem, see page 89 of the text.)

5. For a random variable X, 1 , show¹ that

$$0 \le ||X||_1 \le ||X||_p \le ||X||_q \le ||X||_{\infty}$$

6. For 1 , show that

$$L_{\infty} \subset L_q \subset L_p \subset L_1$$

where $L_p := \{X : ||X||_p < \infty\}.$

¹Hint: Jensen's inequality may help for some parts

- 7. The "Moment Generating Function" (MGF) of a real-valued random variable X (or of its distribution $\mu(dx)$) is the extended real-valued function $M_X(t) := \mathsf{E} \exp(tX) = \int_{\mathbb{R}} e^{tx} \, \mu(dx)$ of $t \in \mathbb{R}$. Show that a nonnegative random variable $X \geq 0$ is in L_1 if $M_X(t) < \infty$ for any t > 0. Show that the converse may fail— i.e., there exist $X \geq 0$ in L_1 for which $M_X(t) = \infty$ for all t > 0.
- 8. Show that Minkowski's Inequality fails for 0 <math>i.e., find $(\Omega, \mathcal{F}, \mathsf{P})$ and $X, Y \in L_p(\Omega, \mathcal{F}, \mathsf{P})$ for which $\|X + Y\|_p > \|X\|_p + \|Y\|_p$ for some 0 .