Sta 711: Homework 9

Uniform Integrability

- 1. **True or false?** Answer whether each of the following statements is true or false. If true, answer why; if false, give a simple counter example.
 - (a) If $\{X_n, n \in \mathbb{N}\}$ is a uniformly integrable (UI) collection of random variables, then X_n is uniformly bounded in L_1 .
 - (b) Define a sequence $\{X_n\}$ of random variables on the unit interval with Lebesgue measure, (Ω, \mathcal{F}, P) with $\Omega = (0, 1]$, $\mathcal{F} = \mathcal{B}$, and $P = \lambda$, by $X_n := \sqrt{n} \mathbf{1}_{(0, \frac{1}{n}]}$. Then $\{X_n\}$ is UI.
 - (c) Let $\{X_n\}$ be a sequence of random variables for which $e^{|X_n|}$ is uniformly bounded in L_1 , *i.e.*, satisfies $\mathsf{E}e^{|X_n|} \leq B$ for some $B < \infty$ and all n. Then $\{X_n\}$ is UI.
 - (d) Let $\{X_n\}$ be a sequence of random variables that is uniformly bounded in L_1 , *i.e.*, satisfies $\mathsf{E}|X_n| \leq B$ for some $B < \infty$ and all n. Then $\{X_n\}$ is UI.

Characteristic Functions

2. Let X be a random variable, and define

$$\phi_X(\theta) := \mathsf{E}(e^{i\theta X}), \qquad \theta \in \mathbb{R}$$

Show that $\phi_X(\theta)$ is uniformly continuous in \mathbb{R} .

- 3. Find the characteristic functions of the following random variables:
 - (a) $W := c^1$ (The superscripts in (a)–(c) are footnote indicators, not exponents)
 - (b) $X \sim \mathsf{Un}(a,b)^2$
 - (c) $Y \sim \mathsf{Ga}(\alpha, \lambda)^3$
 - (d) $Z_n = (Y_1 + Y_2 + \dots + Y_n)/n$, $Y_i \stackrel{\text{iid}}{\sim} \mathsf{Ga}(\alpha, \lambda)$

What is the distribution of Z_n ? What happens as $n \to \infty$?

4. The distribution of a random variable X is called *infinitely divisible* if, for every $n \in \mathbb{N}$, there exist n iid random variables $\{Y_i\}$ such that X has the same distribution as $\sum_{i=1}^{n} Y_i$. Use characteristic functions to show that if $X \sim \mathsf{Po}(\lambda)$, then X is infinitely divisible.⁴

¹A constant random variable with value $c \in \mathbb{R}$

²Uniform, on the interval $(a,b) \subset \mathbb{R}$

³Gamma, with rate parameterization—with pdf $f(y \mid \lambda) = \lambda^{\alpha} y^{\alpha-1} e^{-\lambda y} / \Gamma(\alpha), y > 0.$

⁴Hint: If $\{Y_i\}$ are independent with sum $Y_+ := \sum Y_i$, then $\phi_{Y_+}(\theta) = \prod \phi_{Y_i}(\theta)$ for all $\theta \in \mathbb{R}$.

- 5. Suppose $\{A_n, n \in \mathbb{N}\}$ are independent events satisfying $\mathsf{P}(A_n) < 1, \, \forall n \in \mathbb{N}$. Show that $\mathsf{P}(\bigcup_{n=1}^{\infty} A_n) = 1$ if and only if $\mathsf{P}(A_n \text{ i.o.}) = 1$ ("i.o." means "infinitely often", so the question concerns $\limsup A_n$). Give an example to show that the condition $\mathsf{P}(A_n) < 1$ cannot be dropped.
- 6. Let $\{A_n\}$ be a sequence of events with $\mathsf{P}(A_n) \to 1$ as $n \to \infty$. Prove that there exists a subsequence $\{n_k\}$ tending to infinity such that $\mathsf{P}(\cap_k A_{n_k}) > 0$.
- 7. Let A_n be a sequence of events that all satisfy $\mathsf{P}(A_n) \geq \epsilon$ for some $\epsilon > 0$. Does there necessarily exist a subsequence $\{n_k \to \infty\}$ with $\mathsf{P}(\cap_k A_{n_k}) > 0$? Why or why not?
- 8. Let $\{X_n\}$ be non-negative iid random variables, with tail σ -field

$$\mathcal{T} := \bigcap_{n \in \mathbb{N}} \mathcal{F}'_n, \qquad \mathcal{F}'_n := \sigma\{X_m : m > n\}$$

Is the event

$$E = \{ \text{There exists } \epsilon > 0 \text{ such that } X_n > n\epsilon \text{ for infinitely-many } n \}$$

$$= \bigcup_{\epsilon > 0} \bigcap_{n \ge 1} \bigcup_{m \ge n} \{ \omega : X_m(\omega) > m \epsilon \}$$

in \mathcal{T} ? Prove or disprove it.

Express the probability P[E] in terms of the random variables' common distribution—for example, using their common CDF $F(x) := P[X_n \leq x]$ or moments $E[|X_n|^p]$ for some p > 0.