Sta 711: Homework 10

Conditional Expectation

1. Let $\{N_t\}_{t\geq 0}$ be a homogeneous Poisson process with rate λ , so $N_0=0$ and for every $n\in\mathbb{N}$ and $0=t_0< t_1< ...< t_n<\infty$ the random variables $X_i:=[N_{t_i}-N_{t_{i-1}}]$ for $1\leq i\leq n$ are independent with marginal distributions $X_i\sim \mathsf{Po}\big(\lambda(t_i-t_{i-1})\big)$. For $0< s< t<\infty$ find the conditional expectations:

$$\mathsf{E}[N_s \mid N_t] = \qquad \qquad \mathsf{E}[N_t \mid N_s] =$$

- 2. Let $\{X_1, X_2\} \stackrel{\text{iid}}{\sim} \mathsf{Ex}(1)$ be iid unit-rate exponential random variables, t > 0. Find:
 - (a) $E[X_1 \mid X_1 + X_2] =$
 - (b) $P[X_1 < 3 \mid X_1 + X_2] =$
 - (c) $E[X_1 \mid X_1 \land t] =$
 - (d) $E[X_1 | X_1 \lor t] =$
- 3. Let $X, Y \in L_2(\Omega, \mathcal{F}, \mathsf{P})$ and suppose $\mathsf{E}[X \mid Y] = \phi(Y)$ for a monotonically decreasing Borel function $\phi : \mathbb{R} \to \mathbb{R}$. Prove that $\mathsf{Cov}(X, Y) \leq 0$.
- 4. If $X \in L_2(\Omega, \mathcal{F}, \mathsf{P})$ and $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$, show

$$\mathsf{E}\Big[\big(X - \mathsf{E}[X \mid \mathcal{H}]\big)^2\Big] \ge \mathsf{E}\Big[\big(X - \mathsf{E}[X \mid \mathcal{G}]\big)^2\Big]$$

In English, the MSE of the conditional expectation $\mathsf{E}[X \mid \mathcal{G}]$ given the bigger σ -algebra \mathcal{G} is smaller than the MSE of the conditional expectation $\mathsf{E}[X \mid \mathcal{H}]$ given the smaller σ -algebra \mathcal{H} .

What does this imply for the trivial σ -algebra $\mathcal{H} = \{\emptyset, \Omega\}$?