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1 Extreme Values

Most probability books do a �ne job of 
overing the approximate probability distribution of sums

(or averages) of independent random variables. If fX

j

g are independent and identi
ally distributed

(iid) with any distribution having a �nite mean � and varian
e �

2

, the sum and average

S

n

:=

n

X

j=1

�

X

n

:=

1

n

S

n

are ea
h asymptoti
ally normally distributed in the sense that their standardized version

Z

n

:=

S

n

� n�

�

p

n

=

�

X

n

� �

�=

p

n

satis�es

lim

n!1

P[a < Z

n

� b℄ = �(b)� �(a)

uniformly in �1 < a < b <1, where

�(x) :=

1

p

2�

Z

x

�1

e

�z

2

=2

dz

denotes the standard Normal CDF fun
tion. Some texts go further and dis
uss limits for sums

of random variables X

j

that do not have �nite means or varian
es| in that 
ase the �-Stable

distribution emerges as another (in fa
t, the only other) possible limiting distribution for normalized

sums of the form

S

n

� b

n

a

n

for suitable non-random sequen
es fa

n

g, fb

n

g.

In light of re
ent 
on
erns about e
onomi
 
rises and 
limate 
hanges leading to 
atastrophes in

storm and drought severity, temperature, hurri
ane intensity, and su
h, there is a new interest in

looking not at the probability distributions of averages (like

�

X

n

) but at those of extremes, like:

X

�

n

:= max

1�j�n

X

j

:
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The best tool for studying sums of iid random variables is the 
hara
teristi
 fun
tion �(!) = Ee

i!X

j

,

be
ause the 
hf �

n

for the sum S

n

has a simple expression: �

n

(!) = �(!)

n

. The best tool for

studying maxima or minima of iid random variables is the CDF, for the same reason:

F

n

(x) = P[X

�

n

� x℄ = P f\

n

i=1

[X

i

� x℄g = F (x)

n

= [1�

�

F (x)℄

n

;

where

�

F (x) := P[X > x℄ = [1�F (x)℄ is the survival fun
tion. For (X

�

n

� b

n

)=a

n

to have a limiting

distribution G(z), we would need

P

�

X

�

n

� b

n

a

n

� z

�

= F

n

(b

n

+ za

n

)

= F (b

n

+ za

n

)

n

= [1�

�

F (b

n

+ za

n

)℄

n

! G(z):

We'll need

�

F (b

n

+ za

n

) �

1

n

, or (b

n

+ za

n

) � F

�1

�

1 �

1

n

�

, so good starting pla
es would be a

n

or

b

n

to be about F

�1

(1�

1

n

). In a homework exer
ise you showed that X

�

n

=

p

n! 0 (pr) for any iid

fX

i

g � L

2

, so typi
ally a

n

will grow more slowly than

p

n for L

2

random variables. Let's look at

examples.

1.1 Example 1: Exponential Distribution

Let fX

j

g have independent Exponential distributions X

j

iid

� Ex(�), and let X

�

n

be the largest of the

�rst n. Can we �nd non-random sequen
es fa

n

g, fb

n

g and a limiting CDF G(z) for whi
h

lim

n!1

P

�

X

�

n

� b

n

a

n

� z

�

= G(z)?

For any sequen
es fa

n

g, fb

n

g the exa
t probabilities are

P

�

X

�

n

� b

n

a

n

� z

�

= P[X

�

n

� a

n

z + b

n

℄

= P

�

\

n

j=1

[X

j

� a

n

z + b

n

℄

	

= fP[X

1

� a

n

z + b

n

℄g

n

=

n

1� e

��(a

n

z+b

n

)

o

n

The goal is to �nd fa

n

; b

n

g for whi
h this 
onverges as n!1 to a DF. For this we need the term

in bra
es be 1�O(1=n), so we need log n� �(a

n

z + b

n

) to 
onverge to a non-
onstant fun
tion of

z. If we now 
hoose a

n

:= 1=� and b

n

:= (log n)=�,

P

�

X

�

n

� b

n

a

n

� z

�

=

�

1�

1

n

e

�z

�

n

! G(z) := exp

�

� e

�z

�

; (1)

the standard Gumbel Distribution. Its median ism

�

= � log log 2 � 0:366513 (sin
eG(� log log 2) =

exp(� log 2) = 1=2) and its mean is �

�

= 


e

� 0:577216, the Euler-Mas
heroni 
onstant, so the

median m

�

n

and mean �

�

n

for X

�

n

are

m

�

n

=

log n� log log 2

�

�

�

n

=

log n+ 


e

�

:
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Ea
h grows with n at a logarithmi
 rate.

For example, if we imagine that sprinters' speed in m/s are given by the Ex(1) distribution, then the

fastest speed of n independently-drawn sprinters would have approximately the re-s
aled Gumbel

Distribution with median m

�

n

= log n� log log 2; this has even odds of ex
eeding Usain Bolt's 2009

world-re
ord 100m pa
e of 9.69s if

log n� log log 2 �

100m

9:69s

= 10:32m/s

log n � log log 2 + 10:32

n � exp(�0:37 + 10:32 = 9:95)

= 21 023:73;

i.e., there's about an even 
han
e that one of 21,024 independent Ex(1) random variables would

ex
eed Bolt's pa
e.

For this example we 
an 
ompute exa
tly the median for X

�

n

or, if we prefer, the probability that

X

�

n

ex
eeds 9:95 for n = 21024; the latter, for example, is

P[X

�

21024

> 10:32℄ =

�

1� exp(�10:32)

�

21024

= 0:5000176;

so the Gumbel approximation is quite good.

1.2 Example 2: Normal Distribution

Now let fX

j

g have independent standard Normal distributionsX

j

iid

� No(0; 1), setX

�

n

:= max

1�j�n

X

j

,

and seek non-random fa

n

g, fb

n

g and a limiting CDF G(z) for a

�1

n

(X

�

n

� b

n

). First we need to note

that, for x > 0,

�(�x) =

Z

1

x

�(z) dz

�

Z

1

x

z

x

�(z) dz =

1

x

p

2�

Z

1

x

ze

�z

2

=2

dz =

1

x

�(x):

Gordon's Inequality improves this to the two-sided bound

1 �

�(x)

x�(�x)

� 1 +

1

x

2

for every x > 0. Now let b

n

:= ��

�1

(1=n) be the (1� 1=n)'th quantile (so �(�b

n

) = 1=n) and set

a

n

:= 1=b

n

; note that b

n

�

q

2 log n grows as n!1, while a

n

! 0. By Taylor's theorem and the

evenness of �(z), for �xed z 2 R,

log �(�a

n

z � b

n

) = log �(�b

n

)� a

n

z

�(�b

n

)

�(�b

n

)

+ o(a

n

z)

= log

1

n

� z

�(b

n

)

b

n

�(�b

n

)

+ o(a

n

z)

= log

1

n

� z + o(a

n

z)
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so

P[X

1

� a

n

z + b

n

℄ = �(a

n

z + b

n

)

= 1�

1

n

e

�z+o(1=

p

log n)

; and

P[X

�

n

� a

n

z + b

n

℄ �

�

1� n

�1

e

�z

�

n

� exp(�e

�z

) =: G(z);

again the Gumbel distribution. Similarly, if fX

i

g

iid

� No(�; �

2

) (now with arbitrary mean and

varian
e) then we simply 
hange the lo
ation and s
ale to �nd that with b

n

:= �� ��

�1

(1=n) and

a

n

:= ��=�

�1

(1=n) we have

P

�

X

�

n

� b

n

a

n

� z

�

! G(z) = e

�e

�z

;

with median

m

�

n

= �� ��

�1

(1=n) + (log log 2)�=�

�1

(1=n)

growing like �

p

2 log n as n!1.

Typi
ally unbounded distributions like the Exponential and Normal (as well as the Gamma,

Weibull, et
.) whose tails fall o� exponentially or faster will have this same Gumbel limiting

distribution for the maxima, and will have medians (and other quantiles) that grow as n !1 at

the rate of (some power of) log n.

1.3 Example 3: Pareto Distribution

Distributions with \fatter tails" (i.e., those for whi
h P[X > x℄ falls o� no faster than a power

of x) will have a di�erent limit. For example, let fU

j

g be iid Uniform random variables and set

X

j

= 1=U

j

; then X

j

has the \unit Pareto distribution" determined by

P[X

j

> x℄ = 1=x; x � 1

and the maximum X

�

n

of n iid unit Paretos will satisfy

P[X

�

n

� a

n

z + b

n

℄ =

�

1� [a

n

z + b

n

℄

�1

�

n

a

n

z + b

n

� 1:

With a

n

:= n and b

n

:= 0,

=

�

1�

1

nz

�

n

! e

�1=z

=: G(z); z > 0; (2)

the \unit Fr�e
het Distribution". Similarly for X

j

= �U

�1=�

j

with the Pa(�; �) distribution satisfying

P[X

j

> x℄ = �

�

=x

�

; x � �;

set a

n

:= n

1=�

� and b

n

:= 0 to �nd

P[X

�

n

� a

n

z + b

n

℄ =

�

1�

1

n

z

��

�

n

! e

�z

��

=: G(z j �); z > 0;
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the Fr�e
het distribution with shape parameter � > 0. The Fr�e
het median is (log 2)

�1=�

, so X

�

n

has median

m

�

n

= n

1=�

�(log 2)

�1=�

that grows like a power of n, while the mean is in�nite if � < 1. The distribution is only L

2

for

� > 2, in whi
h 
ase a

n

grows more slowly than

p

n. This limiting Fr�e
het behavior is typi
al for

heavy-tailed distributions su
h as the t, �-stable, and Pareto.

1.4 Example 4a: Minima for the Weibull and Beta Distributions

For �; � > 0, the 1=�'th power of an exponential Ex(�) random variable has the Weibull We(�; �)

distribution, with Survival Fun
tion (SF)

�

G(x) = P[X > x℄ = exp(��x

�

) for x � 0. It follows that

the minimum X

�n

of n iid We(�; �) random variables satis�es

P[X

�n

> x℄ =

n

e

��x

�

o

n

= e

�n�x

�

;

again Weibull but now with the X

�

�We(�; n�) distribution. For (X

�n

� b

n

)=a

n

to have a limiting

distribution we need

P

�

X

�n

� b

n

a

n

> z

�

= e

�n�(b

n

+a

n

z)

�

to 
onverge to a fun
tion of z as n!1. Evidently it will 
onverge to e

�z

�

(z > 0) for b

n

:= 0 and

a

n

:= (n�)

�1=�

, the Weibull We(�; 1) distribution.

The probability that a random variable X � Be(�; �) lies below a small number t > 0 is

P[X � t℄ = 


Z

t

0

x

��1

(1� x)

��1

dx � 


Z

t

0

x

��1

dx = (
=�)t

�

for 
 := �(�+ �)=�(�)�(�), with a relative error no more than (1 � t)

��1

, so the probability that

the minimum X

�n

of n variables fX

j

g

iid

� Be(�; �) ex
eeds t = b

n

+ za

n

for z > 0 is

P fX

�n

> b

n

+ za

n

g �

�

1� (
=�)(b

n

+ za

n

)

�

�

n

or, for b

n

= 0 and a

n

= (�=n
)

1=�

,

= (1� z

�

=n)

n

! exp

�

� z

�

);

again the Weibull We(�; 1) limiting distribution for the minimum.

1.4.1 Example 4b: Beta Distribution Maximum

Let fX

i

g

iid

� Be(�; �) and set Y

i

:= [1�X

i

℄. Then fY

i

g

iid

� Be(�; �) and X

�

n

= 1� Y

�n

, so

P

�

X

�

n

� b

n

a

n

< z

�

= P

�

Y

�n

� (1� b

n

)

a

n

> �z

�

� e

�(�z)

�

; z < 0
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for b

n

:= 1 and a

n

:= (�=n
)

1=�

, with 
 as before, now for z < 0. This is 
alled the reversed Weibull

distribution, with CDF and pdf

G(z j �) = e

�(�z)

�

z < 0 (3)

g(z j �) = �(�z)

��1

e

�(�z)

�

1

fz<0g

;

with median m

�

n

= �(n= log 2)

�1=�

in
reasing to zero as n!1.

Similarly the maximum X

�

n

of n iid uniform random variables X

j

� Un(L;R) on an arbitrary

interval has limiting distribution:

P[a

�1

n

[X

�

n

� b

n

℄ � z℄ = P[X

�

n

� a

n

z + b

n

℄

=

�

1�

R� a

n

z � b

n

R� L

�

n

if L � a

n

z + b

n

� R

= (1 + z=n)

n

! e

z

if � n � z � 0

for a

n

:= (R� L)=n and b

n

:= R, the unit Reversed We(1; 1) Weibull. Now the median for X

�

n

is

m

�

n

= R� (R� L)(log 2)=n;

in
reasing at rate 1=n to a �nite upper bound of R. The suitably standardized minimum and max-

imum of n independent Be(�; �) random variables have asymptoti
 We(�; 1) and reverse We(�; 1)

distributions, respe
tively. These are typi
al of the maximal behavior for bounded random variables

with 
ontinuous distributions.

1.5 The Three Types Theorem

Fisher and Tippett (1928) �rst proved that lo
ation-s
ale families of these three distributions|

Gumbel (1), Fr�e
het (2), and reversed Weibull (3)| are the only possible limits for maxima of

independent random variables. That is, if there exist nonrandom sequen
es a

n

> 0 and b

n

2 R and

a nondegenerate distribution G su
h that the maximum X

�

n

:= max

j�n

X

j

of iid random variables

fX

j

g satis�es

P

�

X

�

n

� b

n

a

n

� z

�

! G(z) (4)

then G must be one of these three distributions: Gumbel, Fr�e
het, or reversed Weibull. Half a


entury later Daniel M
Fadden (1978) dis
overed that all three of these limiting distributions 
ould

be expressed in the same fun
tional form as spe
ial 
ases of a single three-parameter \Generalized

Extreme Value" (GEV) distribution, with CDF

G(x;�; �; �) = exp

(

�

�

1 + �

�

x� �

�

��

�1=�

)

(5)

whi
h redu
es to the Fr�e
het with � = 1=� if � > 0, reversed Weibull with � = �1=� if � < 0,

and Gumbel as � ! 0 (see Appendix A.5 on p. 17 for more details). In some ways I feel this was

unfortunate, be
ause now it is 
ommon for people to model and �t the GEV without thinking very
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learly about the spe
i�
 form of their data and distributions. Also, point estimates will (almost

surely) never be exa
tly

^

� = 0, so the Gumbel (whi
h, you will re
all, was the limit distribution for

Exponential, Gamma, Normal, and other distributions whose tails fall o� exponentially) will never

be identi�ed as the limit.

The key idea for the three-types theorem is to noti
e that any distribution G satisfying (4) must

also have the property that for all n, the maximum of n independent random variables with CDF

G must also (after suitable shift and s
ale 
hanges) have CDF G| i.e., that for any n there exist


onstants a

n

and b

n

su
h that for all z 2 R,

G(z)

n

= G(a

n

z + b

n

):

It turns out that the only CDF that satis�es this equation is (5), with a

n

= n

�

and b

n

= (n

�

�1)�=�,

or a

n

= 1 and b

n

= � log n for the Gumbel 
ase � = 0.

2 Threshold Ex
eedan
es

In this se
tion we'll explore a di�erent way of looking at the same limiting distributions of maxima,

the \peaks over thresholds" or \PoT" approa
h.

As before let fX

j

g be iid for 1 � j � n and set

1

T

j

:=

j�1=2

n

2 (0; 1). Let a

n

and b

n

be real

numbers and set Y

j

:= a

n

X

j

+ b

n

. The ve
tor N(R

i

) of the numbers of points (T

j

; Y

j

) in disjoint

re
tangles R

i

:= (s

i

; t

i

℄� (u

i

; v

i

℄ with 0 � s

i

< t

i

� 1 and u � u

i

< v

i

� 1 will have a multinomial

distribution with parameters n and ~p, where

2

p

i

� (t

i

� s

i

)

�

F (a

n

v

i

+ b

n

)� F (a

n

u

i

+ b

n

)

�

:

For suÆ
iently large u and n, the fN(R

i

)g will be approximately independent Poisson random

variables, with means

�

i

= np

i

:

Here we look for 
hoi
es of a

n

and b

n

for whi
h �

i

has a simple form, and then exploit it.

2.1 Example 1: Weibull Distribution

If P[X

j

> x℄ = e

��x

�

for x > 0, then for the 
hoi
e b

n

:= [�

�1

log n℄

1=�

and a

n

:= b

n

=(� log n) we

have for all large enough z,

n[1� F (a

n

z + b

n

)℄ = n exp

�

� �(a

n

z + b

n

)

�

�

= n exp

�

� log n(1 + z=� log n)

�

�

= n exp

�

� log n(1 + z= log n+ o(1= log n))

�

� e

�z

;

so fT

j

; Y

j

= (X

j

� b

n

)=a

n

g have approximately the Poisson distribution on (0; 1℄�R with intensity

measure �(dt dy) = dt e

�y

dy (illustrated in Figure (1)). A similar approa
h with suitable a

n

, b

n

works for any other distribution in the Gumbel domain.

1

The following results would be identi
al if instead we took fT

j

g

iid

� Un(0; 1).

2

The approximation would be exa
t for fT

j

g

iid

� Un(0; 1).
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Peaks over Threshhold: We(1, 1)

Figure 1: Simulation of 1000 s
aled Weibull draws. Horizontal line is at 95% quantile. Cumulative

maximum M

t

is shown as dotted line.

The maximum M

t

:= maxfY

j

: T

j

� tg is a non-de
reasing sto
hasti
 pro
ess on the unit interval

0 < t � 1, with CDF

F

t

(z) = P[M

t

� z℄

= P[No Poisson points in (0; t℄ � (z;1)℄

= e

�te

�z

;

the Gumbel distribution. The events fM

t

� zg and

n

X

�

bnt


� a

n

z + b

n

o

are identi
al.

2.1.1 Related Max-Stable Pro
ess

Let f(T

j

; Y

j

)g be the points of a Po(dt e

�y

dy) random �eld on all of R

d

� R

+

, and let f(t) be any

positive fun
tion with �nite Lapla
e transform. De�ne a random pro
ess by

Z(t) := sup

j

fY

j

=f(T

j

� t)g:

8



If f(t) =

P

a

i

1

A

i

(t) is a simple fun
tion, then

P[Z(t) � z℄ =

Y

i

P

�

sup

j

fY

j

=a

i

� z : T

j

� t 2 A

i

�

=

Y

i

P

�

No Poisson pts in (A

i

+ t)� (a

i

z;1)

�

=

Y

i

exp

�

� jA

i

je

�a

i

z

�

= exp

�

�

Z

e

�zf(s)

ds

�

;

so Z(t) is a stationary pro
ess. For any (not ne
essarily simple) positive fun
tion f(t) on R

d

, the

same identity follows from LDCT.

2.2 Example 2: Pareto Distribution

If P[X

j

> x℄ = �

�

x

��

for x > �, then for the 
hoi
e a

n

:= �n

1=�

and b

n

:= 0 we have for all large

enough z,

n[1� F (a

n

z + b

n

)℄ = n

�

�

�

(�n

1=�

z)

��

�

= z

��

;

so fT

j

; Y

j

= (X

j

�b

n

)=a

n

g have approximately the Poisson distribution on (0; 1℄�R

+

with intensity

measure �(dt dy) = dt �y

���1

dy. A similar approa
h with suitable a

n

, b

n

works for any other

distribution in the Fr�e
het domain.

The maximum M

t

:= maxfY

j

: T

j

� tg is a non-de
reasing sto
hasti
 pro
ess on the unit interval

0 < t � 1, with CDF

F

t

(z) = P[M

t

� z℄

= P[No Poisson points in (0; t℄ � (z;1)℄

= e

�tz

��

;

the Fr�e
het distribution. The events fM

t

� zg and

�

X

�

bnt


� a

n

z + b

n

	

are identi
al.

Note that the sum of the fY

j

: T

j

� tg will be �nite almost-surely if

R

1

0

(z ^ 1)�z

���1

dz < 1,

i.e., if 0 < � < 1; in that 
ase the non-de
reasing pro
ess

S

t

:=

X

fY

j

: T

j

� tg

is a fully-skewed �-Stable SII pro
ess with distribution

� St

A

�

�; � = 1; 
 = t�(1��) 
os

��

2

; Æ = 0

�

and the fY

j

g are the \jumps" of S

t

. A similar representation holds for 1 � � < 2, but \
ompen-

sation" is required (sort of like subtra
ting an in�nite drift from S

t

). There is no �-Stable pro
ess

for � > 2, although the 
onne
tion between Fr�e
het distribution and the Poisson point pro
ess

remains.

9
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Figure 2: Simulation of 1000 s
aled Pareto draws. Horizontal line is at 95% quantile. Cumulative

maximum M

t

is shown as dotted line.

2.2.1 Related Max-Stable Pro
ess

Let f(T

j

; Y

j

)g be the points of a Po(dt �y

���1

dy) random �eld on all of R

d

� R

+

, and let 0 �

f(t) 2 L

�

(R

d

; dt). De�ne a random pro
ess by

Z(t) = sup

j

fY

j

f(t� T

j

)g:

If f(t) =

P

a

i

1

A

i

(t) is a simple fun
tion, then

P[Z(t) � z℄ =

Y

i

P

�

sup

j

fY

j

a

i

� z : t� T

j

2 A

i

�

=

Y

i

P

�

No Poisson pts in (t�A

i

)� (z=a

i

;1)

�

=

Y

i

exp

�

� jA

i

j(z=a

i

)

��

�

= exp

�

�z

��

Z

f(s)

�

ds

�

;

so Z(t) is a stationary pro
ess with a Fr�e
het Fr

�

�; kfk

�

�

�

distribution. For non-simple 0 � f 2 L

�

,

the same identity follows from LDCT.
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2.3 Example 3: Beta Distribution

If X

j

iid

� Be(�; �) then for small �, x

��1

� 1 for x > 1� � and so

P[X

j

> 1� �℄ �

�(�+ �)

�(�)�(�)

Z

1

1��

(1� x)

��1

dx

=

�

�

�B(�; �)

; B(�; �) :=

�(�)�(�)

�(�+ �)

:

For a

n

:= (�B(�; �)=n)

1=�

and b

n

:= 1, we have

nP[X

j

> a

n

z + b

n

℄ �

n

�B(�; �)

(1� a

n

z � b

n

)

�

= (�z)

�

; z < 0

so fT

j

; Y

j

= (X

j

�b

n

)=a

n

g have approximately the Poisson distribution on (0; 1℄�R

�

with intensity

measure �(dt dy) = dt �(�y)

��1

dy. A similar approa
h with suitable a

n

, b

n

works for any other

distribution in the Reverse Weibull domain.

The maximum M

t

:= maxfY

j

: T

j

� tg is a non-de
reasing sto
hasti
 pro
ess on the unit interval

0 < t � 1, with CDF

F

t

(z) = P[M

t

� z℄

= P[No Poisson points in (0; t℄ � (z;1)℄

= e

�t(�z)

�

; z < 0;

the reversed Weibull distribution. The events fM

t

� zg and

n

X

�

bnt


� a

n

z + b

n

o

are identi
al.

The minimum of n iid Be(�; �) random variables 
an be studied in the same way; for a

n

:=

(�B(�; �)=n)

1=�

and b

n

:= 0, the points fT

j

; Y

j

= (X

j

� b

n

)=a

n

g have approximately the Poisson

distribution on (0; 1℄ � R

+

with intensity measure �(dt dy) = dt �y

��1

dy, and the 
umulative

minimumm

t

= minfY

j

: T

j

� tg is a non-in
reasing sto
hasti
 pro
ess satisfying P[m

t

> z℄ = e

�tz

�

for z � 0, the usual (un-reversed) Weibull.

2.3.1 Related Max-Stable Pro
ess

Let f(T

j

; Y

j

)g be the points of a Po(dt �y

��1

dy) random �eld on all of R

d

�R

+

, and let 0 < f(t) 2

L

�

(R

d

; dt). De�ne a random pro
ess by

Z(t) = inf

j

fY

j

=f(t� T

j

)g:

11



If f(t) =

P

a

i

1

A

i

(t) is a simple fun
tion, then

P[Z(t) > z℄ =

Y

i

P

�

sup

j

fY

j

=a

i

> z : t� T

j

2 A

i

�

=

Y

i

P

�

No Poisson pts in (t�A

i

)� (0; z a

i

℄

�

=

Y

i

exp

�

� jA

i

j(z a

i

)

�

�

= exp

�

�z

�

Z

f(s)

�

ds

�

;

so Z(t) is a stationary pro
ess with a WeibullWe

�

�; kfk

�

�

�

distribution. For non-simple 0 � f 2 L

�

,

the same identity follows from LDCT.

3 PoT Inferen
e

Distribute points fy

j

g a

ording to Po

�

�(dy)

�

and �x u in the support of �. Let J be the number

of points Y

j

> u (or Y

j

< u for the Weibull 
ase), for �(dy) = �
y

���1

dy (Fr�e
het) or �(dy) =

�
y

��1

dy (Weibull) on R

+

, or �(dy) = 
e

�y

dy (Gumbel) on R. Denoting the density of �(dy) by

�(y), we 
an express the joint pdf for J and the J threshold ex
eedan
es fx

j

g as

L(�; 
; a; b) = a

�k

Y

j�J

�

�

�

�

x

j

� b

a

�

�

exp

�

��

�

�

u� b

a

;1

�

�

and regard it as a likelihood fun
tion for �, 
, and the s
ale and lo
ation parameters a, b. It 
an

probably be used to get MLEs and Fisher Information and maybe 
onjugate and Je�reys' priors.

The rate �

u

of ex
eedan
es of level u may also be interesting.

4 Multivariate EVT

In many appli
ation areas the problem arises of studying the extremes for random ve
tors. Ex-

amples in
lude the daily pri
es or returns of multiple sto
ks, funds, indi
es, or other �nan
ial

instruments; pre
ipitation levels at multiple lo
ations; the size and transmission speed of internet

streams; or wind speeds and wave heights at vulnerable lo
ations. Extreme value theory is mu
h

less well-developed for multivariate random ve
tors than it is for univariate quantities.

The 
ustomary approa
h to studying the distribution of extremes for random ve
tors begins by

transforming ea
h 
omponent of the ve
tor to a standard EV distribution (often the \unit Fr�e
het"

with CDF G(x) = exp(�1=x)), then exploring dependen
e among the 
omponents. The initial

transformation is most often performed parametri
ally by estimating the three parameters of the

GEV separately for ea
h dimension; then transforming to uniformity by the CDF for that GEV

(usually ignoring un
ertainty in the parameter estimation), then to unit Fr�e
het by the inverse

CDF G

�1

(u) = �1= log u.

12



4.1 Asymptoti
 Dependen
e & Independen
e

Let (X;Y ) be a two-dimensional random ve
tor with unit Fr�e
het marginal distributions. The

extremal index, denoted � by some authors (su
h as Smith and Weissman, 1994), and � by others

(in
luding Coles et al., 1999, whom we follow here), is

� = lim

z!1

P[Y > z j X > z℄ (6)

= lim

z!1

P[X > z; Y > z℄

1� exp(�1=z)

= lim

z!1

P[X > z j Y > z℄:

This expression is both symmetri
 in X and Y , and invariant under (identi
al) 
omponent-wise

monotone transformations.

Evidently �, when it exists, takes values between 0 and 1. The 
omponents X and Y are 
alled

asymptoti
ally independent if � = 0. Surprisingly (for most of us, anyway), every nondegenerate

bivariate normal distribution (even one with 
orrelation � = 0:9999) is asymptoti
ally independent.

If we take the monotone transformation to unit No(0; 1) marginals with 
ovarian
e � < 1, then

Y j X � No

�

�X; 1� �

2

�

so

P[Y > z j X = x℄ = P

h

Y � �x

p

1� �

2

>

z � �x

p

1� �

2

i

= �

�

�z + �x

p

1� �

2

�

P[Y > z j X > z℄ =

1

�(�z)

Z

1

z

�

�

�x� z

p

1� �

2

�

'(x) dx

�

1

z

�

�

(�� 1)z

p

1� �

2

�

! 0 as z !1

for any � < 1.

Any value of � 2 [0; 1℄ is possible. To see this, take 0 � � � 1 and 
onsider the \bivariate logisti


model" with CDF

G(x; y) = exp

�

�

h

x

�1=�

+ y

�1=�

i

�

�

for � > 0, and G(x; y) = exp

�

� 1=min(x; y)

�

(the limit) for � = 0. Evidently X and Y ea
h have

unit Fr�e
het marginals (take the limits x!1 and y !1), and

� = lim

z!1

P[X > z; Y > z℄

P[X > z℄

= lim

z!1

1� P[X � z℄� P[Y � z℄ + P[X � z; Y � z℄

1� P[X � z℄

= lim

z!1

1� 2G(z) +G(z; z)

1�G(z)

= 2� lim

z!1

1�G(z; z)

1�G(z)

= 2� lim

z!1

1� exp(�2

�

=z)

1� exp(�1=z)

= 2� 2

�

by L'Hôpital's rule. This ranges from 0 to 1 as � ranges from 1 to 0.
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4.2 Multivariate EV Distributions

Let f(X

i

; Y

i

)g be iid random ve
tors in R

2

with Fr�e
het marginals and, for n 2 N, denote the


omponent-wise maxima by:

M

n

:= (X

�

n

; Y

�

n

); X

�

n

:= max

1�i�n

X

i

; Y

�

n

:= max

1�i�n

Y

i

:

Then

P[X

�

n

=n � z℄ = P[X

1

� nz℄

n

=

�

e

�1=nz

�

n

= e

�1=z

and similarly P[Y

�

n

=n � z℄ = e

�1=z

, so both marginals of M

n

=n are unit Fr�e
het.

Theorem 1 If there exists a non-degenerate bivariate distribution G(x; y) su
h that M

n

=n )

G(x; y) as n!1, i.e., that

P [X

�

n

� nx; Y

�

n

� ny℄! G(x; y);

then

G(x; y) = e

�V (x;y)

(7)

for a nonnegative fun
tion V : R

2

+

! R

+

of the form

V (x; y) = 2

Z

�

1

max

�

�

1

x

;

�

2

y

�

H(d�) (8)

for some probability measure H(d�) on the unit simplex �

1

� R

2

+

with mean

Z

�

1

�H(d�) =

�

1

2

;

1

2

�

: (9)

Every su
h \spe
tral measure" H gives rise to a bivariate extreme value distribution; below we'll

motivate this by showing how H arises and where (8) 
omes from. From Eqns (7, 8), the marginal

distribution fun
tion for X must be G(x;1) = exp

�

� V (x;1)

�

= exp

�

� 2

R

�

1

�

1

H(d�)=x,

so (9) is simply a standardization 
ondition ensuring that X and Y have unit Fr�e
het marginal

distributions. Meanwhile, let's set G(x) := exp(�1=x) and note that the extremal index of (6) 
an

also be 
al
ulated as � = lim

u!1

�(u) for

�(u) : =

P[G(X) > u; G(Y ) > u℄

P[G(X) > u℄

=

1� P[G(X) � u℄� P[G(Y ) � u℄ + P[G(X) � u; G(Y ) � u℄

P[G(X) > u℄

=

1� 2u+ P[G(X) � u; G(Y ) � u℄

1� u

= 2�

1� P[G(X) � u; G(Y ) � u℄

1� u

= 2�

log P[G(X) � u; G(Y ) � u℄

log u

+O(1� u)
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sin
e log(1 � �) = �� + O(�

2

) for � � 0. With u = G(z), or z = �1= log u, we have P[G(X) �

u; G(Y ) � u℄ = P[X � z; Y � z℄ = G(z; z) = exp

�

� V (z; z)

�

so

�(u) � 2�

�V (z; z)

�1=z

= 2� zV (z; z)

and by (8) in the limit we have

� = 2� 2

Z

�

1

max(�

1

; �

2

)H(d�):

This will be zero if and only if max(�

1

; �

2

) is one on the support of H, i.e., if and only if H is

supported entirely on the boundary ��

1

= f(0; 1); (1; 0)g.

4.3 Poisson Conne
tion

Let H be a probability measure on �

1

satisfying (9), and 
onsider a Poisson random measure

N(dx dy) on the �rst quadrant whose intensity 
an be written 2H(d�)r

�2

dr in polar 
oordinates

r = x+ y, � = (x; y)=r. Let X

�

and Y

�

denote the maxima of the x and y 
oordinates of the mass

points of N(dx dy), respe
tively. For x; y > 0 the event that [X

�

� x; Y

�

� y℄ is just the event

that N assigns zero points to

�

[0; x℄� [0; y℄

�




. We 
an 
ompute this in polar 
oordinates as

P[X

�

� x; Y

�

� y℄ = exp

(

�

Z

�

[0;x℄�[0;y℄

�




2H(d�) r

�2

dr

)

= exp

(

�

Z

(r�

1

>x) k (r�

2

>y)

2H(d�) r

�2

dr

)

= exp

(

�

Z

r>min(x=�

1

;y=�

2

)

2H(d�) r

�2

dr

)

= exp

�

�

Z

�

1

2

min(x=�

1

; y=�

2

)

H(d�)

�

= exp

�

�2

Z

�

1

max

�

�

1

x

;

�

2

y

�

H(d�)

�

;

exa
tly the same as G(x; y) from (7). Thus for large n the extremes of the ve
tors f(X

j

=n; Y

j

=n)g,

1 � j � n behave like the extremes of a Poisson point 
loud with intensity measure 2H(d�)r

�2

dr.

In d � 2 dimensions the same things work, of 
ourse, with Poisson intensity measure dH(d�)r

�2

on R

d

+

= �

d�1

� R

+

.

Coles et al. (1999) also de�ne a se
ond index

�� := lim

z!1

2 log P[X > z℄

logP[X > z; Y > z℄

� 1;

taking values in the interval [�1; 1℄, whi
h depends on the minimum of X;Y in the tails; they argue

that it measures a degree of dependen
e for asymptoti
ally independent variables (those for whi
h

� = 0). It vanishes for independent X;Y , and takes the value +1 for fully-dependent X � Y .
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A Appendix: A Few Less Familiar Distributions

Several distributions pop up when exploring extremes that are less studied than the usual suspe
ts;

here we 
olle
t a bit about them.

A.1 Pareto

If U � Un(0; 1) and � > 0, then X = U

�1=�

has the Pareto distribution taking all values in (1;1).

The survival fun
tion (SF) and density fun
tion (pdf) are

P[X > x℄ = P[U

�1=�

> x℄

= P[U < x

��

℄

= x

��

; x > 1

f(x) = �x

���1

1

fx>1g

:

This is the prototype \heavy-tailed" distribution, whose SF and pdf fall o� like powers of x (instead

of the exponential fall-o� typi
al of most 
ommonly-studied distributions). The mean is in�nite for

� � 1, and 1=(� � 1) <1 for � > 1; the varian
e in�nite for � � 2.

It is frequently taken to be part of a two-parameter s
ale family (Y := �X � Pa(�; �), taking all

values in (�;1)) and less 
ommonly part of a three-parameter lo
ation/s
ale family.

A.2 Gumbel

If Y � Ex(1) is a standard exponential random variable, then X = � log Y has the standard Gumbel

distribution taking all values in R. The CDF and pdf are

P[X � x℄ = P[Y � e

�x

℄

= e

�e

�x

f(x) = e

�x�e

�x

and the mean is EX = 


e

� 0:5772, the Euler-M
Laren 
onstant. Sin
e the mode is zero, the

distribution is skewed to the right; the tail probabilities fall o� exponentially as x!1, but mu
h

faster as x! �1. It is 
ommonly taken to be part of a two-parameter lo
ation/s
ale family.

A.3 Fr�e
het

If Y � Ex(1) is a standard exponential random variable and � > 0, then X = Y

�1=�

has the

standard Fr�e
het distribution taking all values in R

+

. The CDF and pdf are

P[X � x℄ = P[Y � x

��

℄; x > 0

= e

�x

��

f(x) = �x

���1

e

�x

��

1

fx>0g

and the mean is EX = �(1 � 1=�) for � > 1, or in�nity for � � 1. The varian
e is in�nite for

� � 2. The mode (1 + 1=�)

�1=�

and median (log 2)

�1=�

are well-de�ned for all � > 0.
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This too is a heavy-tailed distribution, with SF and CDF falling o� at the same rates as the Pa(�).

It is 
ommonly taken to be part of a three-parameter lo
ation/s
ale family.

A.4 Weibull

If Y � Ex(1) is a standard exponential random variable and � > 0 then X = Y

1=�

has the Weibull

distribution taking all values in R

+

. The SF and pdf are

P[X > x℄ = P[Y > x

�

℄; x > 0

= e

�x

�

f(x) = �x

��1

e

�x

�

1

fx>0g

and the mean EX = �(1 + 1=�) and varian
e are �nite for all � > 0.

It is 
ommonly taken to be part of a two-parameter s
ale family, with SF S(x) = exp(��x

�

) and

hen
e hazard fun
tion

h(x) = f(x)=S(x) =

��x

��1

exp (��x

�

)

exp (��x

�

)

1

fx>0g

= ��x

��1

1

fx>0g

;

a monomial in x that 
an be either in
reasing (for � > 1) or de
reasing (for � < 1) to model failure

times for systems with either in
reasing or de
reasing instantaneous hazard.

If X �We(�; 1) has the Weibull distribution then Z := �X has the reversed Weibull distribution,

with pdf

g(z) = �(�z)

��1

e

�(�z)

�

1

fz<0g

:

A.5 GEV

M
Fadden (1978) dis
overed that lo
ation/s
ale families built on the Gumbel, Fr�e
het, and reversed

Weibull distribution were all spe
ial 
ases of the Generalized Extreme Value distribution, with


onventional CDF parameterization given by:

G(x;�; �; �) = exp

(
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)

(5)

for those x satisfying 1 + �(x� �)=� > 0, and pdf:

g(x;�; �; �) =

1
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:

Note the range of GEV depends on the sign of �: X 2 (���=�;1) for � > 0, X 2 R for � = 0, and

X 2 (�1; � � �=�) for � < 0. Evidently (5) is a lo
ation/s
ale family built on a standard GEV

distribution (� = 0, � = 1) with CDF and pdf:

G(x; �) = exp

n

� (1 + �x)

�1=�

o

g(x; �) = [1 + �x℄

�1�1=�

exp

n

� (1 + �x)

�1=�

o

:
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The standard Gumbel, Fr�e
het, and reversed Weibull 
an ea
h be expressed in terms of G(x;�; �; �)

from (5):

Fr�e
het: exp (�x

��

) = G(x; � = 1; � =

1

�

; � =

1

�

); � > 0

Gumbel: exp (�e

�x

) = G(x; � = 0; � = 1; � = 0); �=0

Rev Weibull: exp (�(�x)

�

) = G(x; � = �1; � =

1

�

; � = �

1

�

); � < 0:

Note that if fX

i

g

iid

� GEV(�; �; �) then X

�

n

:= max

1�i�n

fX

i

g � GEV(�

�

; �

�

; �) for �

�

:= �+�(n

�

� 1)=�

and �

�

:= �n

�

, i.e., the maximum of the �rst n also has the GEV distribution with the same shape

parameter �, larger lo
ation parameter �

�

> �, and s
ale �

�

that is larger (resp, smaller) than that

of X

i

if � > 0 (resp, � < 0). This property (that G(x;�; �; �)

n

= G(x;�

�

n

; �

�

n

; �) for some �

�

n

and

�

�

n

, for ea
h n 2 N) 
hara
terizes the GEV, and is the basis for the Three Types theorem.

A.6 GPD

If X � GEV(�; �; �) for � > 0 with CDF

G(x;�; �; �) = exp

(
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x� �
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)

(5)

then for y > 0 the ex
eedan
es Y = [X � u℄ of a high level u� �� �=� satisfy

P[Y > y j Y > 0℄ = P[X > y + u j X > u℄

=

1� exp

n

�

�

1 + �

�

y+u��

�

��

�1=�

o

1� exp

n

�

�

1 + �

�

u��

�

��

�1=�

o

�

�

1 + �

�

y+u��

�

��

�1=�

�

1 + �

�

u��

�

��
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=

�

� + � (y + u� �)

� + � ( u� �)

�

�1=�

= [1 + �y=�̂℄

�1=�

; w/ �̂ := � + � (u� �) :

This is the generalized Pareto distribution GPD(�; �̂), with CDF H(y) = 1 � [1 + �y=�̂℄

�1=�

+

for

y > 0 and mean

E[Y ℄ =

Z

1

0

�

H(y) dy = �̂=(1 � �); � < 1

(or in�nity if � � 1), so for 0 < � < 1 (i.e., the Fr�e
het 
ase with � > 1),

E[X � u j X > u℄ �

� � ��

1� �

+

�

1� �

u =

�

1� �

+

�

1� �

(u� �)

is linear in u with a slope that determines �. The varian
e of the GPD is also available in 
losed

form, in�nite for � �

1

2

and, for 0 < � <

1

2

,

V[X j X > u℄ = V[Y ℄ =

�̂

2

(1� �)

2

(1� 2�)

=

E[Y ℄

2

1� 2�

:
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For 0 < � < 1, when X has a Fr�e
het distribution, the GPD is a s
aled (by �=�̂) and o�set (to

zero) version of the ordinary Pareto distribution. It has the interesting property that, for any v > 0

and y > 0,

P[Y > y + v j Y > v℄ =

[1 + �(y + v)=�̂℄

�1=�

[1 + �(v)=�̂℄

�1=�

=

�

�̂ + �v + �y

�̂ + �v

�

�1=�

= [1 + �y=�̂

0

℄

�1=�

; �̂

0

:= �̂ + �v;

i.e., the 
onditional distribution of (Y � v) given [Y > v℄ is again GPD(�; �̂

0

).

This is the key to estimating the shape � and threshold u

0

above whi
h extremes are modeled

suÆ
iently well by the GPD, a bla
k art. A plot of the empiri
al \Mean Residual Life" (MRL) Y :=

(X�u), plotted against u, should be approximately linear above some threshold u

0

. Unfortunately

the variation around that line gets wider and wider with in
reasing u (be
ause the MRL is estimated

on the basis of fewer and fewer extreme events as u in
reases). The varian
e and mean 
al
ulations

above should make it possible to generate error bars.

A 
ommon estimator of � � 1=� in the Fr�e
het 
ase is \Hill's Index" (Hill, 1975). Let

�

X

(i)

	

be

the order statisti
s (with X

(1)

the largest) for an iid sample of n 2 N observations fX

j

g and, for

ea
h 1 � k � n, set

H

X

k;n

:=

1

k

k

X

i=1

log

X

(i)

X

(k+1)

:

This is just the MLE based on the observations that ex
eed an order statisti
. Resni
k and St�ari
�a

(1998) showed it to be 
onsistent as k !1 and n=k !1, even for many dependent sequen
es.
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