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1 Extreme Values

Most probability books do a fine job of covering the approximate probability distribution of sums
(or averages) of independent random variables. If { X} are independent and identically distributed
(iid) with any distribution having a finite mean p and variance o2, the sum and average

n
- 1
Sy = Z X, =-5,
j=1
are each asymptotically normally distributed in the sense that their standardized version

7 . Sn_nN:Xn_M
" ovn o/v/n

satisfies
lim Pla < Z,, <b] = ®(b) — ®(a)

n—00

uniformly in —oo < a < b < oo, where

O(z) := #/ e~ "2 dz

denotes the standard Normal CDF function. Some texts go further and discuss limits for sums
of random variables X; that do not have finite means or variances— in that case the a-Stable
distribution emerges as another (in fact, the only other) possible limiting distribution for normalized
sums of the form

Sp —bn

Qnp

for suitable non-random sequences {a,}, {b,}.

In light of recent concerns about economic crises and climate changes leading to catastrophes in
storm and drought severity, temperature, hurricane intensity, and such, there is a new interest in
looking not at the probability distributions of averages (like X,,) but at those of extremes, like:

X, := max Xj.
1<j<n



The best tool for studying sums of iid random variables is the characteristic function y(w) = Ee™Xi,
because the chf y,, for the sum S, has a simple expression: x,(w) = x(w)". The best tool for
studying mazima or minima of iid random variables is the CDF, for the same reason:

Fu(w) = PIX;, < o] = P{NLL [XG < o]} = Fa)" = [1 - F(«)]",

where F'(z) := P[X > z] = [1 — F(x)] is the survival function. For (X} —b,)/a, to have a limiting
distribution G(z), we would need

P {M < z} = F,,(by, + zay,)
Qnp,
= F(by + zap)"
=[1 = F(b, + za,)]"
— G(z).

We'll need F(b, + za,) < %, or (b, + za,) < F_l(l — %), so good starting places would be a,, or
by to be about F~1(1 — 1), In a homework exercise you showed that X;;//n — 0 (pr) for any iid
{X;} C Ly, so typically a,, will grow more slowly than \/n for L, random variables. Let’s look at

examples.

1.1 Example 1: Exponential Distribution

Let {X;} have independent Exponential distributions X i Ex(A), and let X' be the largest of the
first n. Can we find non-random sequences {ay}, {b,} and a limiting CDF G(z) for which

Xi = bu _

lim P < z] = G(2)?

n—00 |: Qp,

For any sequences {a,}, {b,} the exact probabilities are
Xy —by
P {"7 < z] =P[X, <ayz+b,]
n
=P {N}_1[X; < anz +b,]}
={P[X1 < ayz+by]}"
— {1 - 67)\(anz+bn)}n

The goal is to find {a,,by,} for which this converges as n — oo to a DF. For this we need the term
in braces be 1 — O(1/n), so we need logn — A(a,z + by) to converge to a non-constant function of
z. If we now choose a,, := 1/X and b, := (logn)/A,

P [M < z] = {1 — lez}n — G(z) =exp(—e 7?), (1)

ap n

the standard Gumbel Distribution. Its median is m* = —loglog 2 = 0.366513 (since G(— log log2) =
exp(—log2) = 1/2) and its mean is pu* = . =~ 0.577216, the Euler-Mascheroni constant, so the
median m; and mean p,, for X are

« _ logn —loglog 2 «  logn+7.
n = b\ Pn = ——>

m



Each grows with n at a logarithmic rate.

For example, if we imagine that sprinters’ speed in m/s are given by the Ex(1) distribution, then the
fastest speed of n independently-drawn sprinters would have approximately the re-scaled Gumbel
Distribution with median m;, = logn — loglog 2; this has even odds of exceeding Usain Bolt’s 2009
world-record 100m pace of 9.69s if

100m

logn — loglog 2 > ——
81 OB 082 = 9 695

=10.32m/s
logn > loglog 2 + 10.32
n > exp(—0.37 + 10.32 = 9.95)
=21023.73,

i.e., there’s about an even chance that one of 21,024 independent Ex(1) random variables would
exceed Bolt’s pace.

For this example we can compute exactly the median for X or, if we prefer, the probability that
X exceeds 9.95 for n = 21024; the latter, for example, is

21024

P[X31024 > 10.32] = [1 — exp(—10.32)] = 0.5000176,

so the Gumbel approximation is quite good.
1.2 Example 2: Normal Distribution
Now let { X} have independent standard Normal distributions X; Y No(0,1), set X;¥ := max;<j<, X;

and seek non-random {a,}, {b,} and a limiting CDF G(z) for a,, ' (X} —b,). First we need to note
that, for z > 0,

o) = [ ole)d:
< /xoo %qﬁ(z) iz = — /:o 2o 2y = %gé(x).

V2T

Gordon’s Inequality improves this to the two-sided bound

for every x > 0. Now let b, := —® 1(1/n) be the (1 — 1/n)’th quantile (so ®(—b,) = 1/n) and set
ap := 1/by; note that b, < (/2logn grows as n — oo, while a,, = 0. By Taylor’s theorem and the

evenness of ¢(z), for fixed z € R,

log ®(—anpz — by) = log ®(—by,) — anzi((:zz)) + o(apz)
1 ¢ (bn)
= log — — an S(=by) + o(apz)

1
=log— — 2+ o(apz)
n



SO

P[X) < apz+ b, = ®(apz + by)
-1_ lefz+o(1/\/logn)’ and

n
PIX) <anz+by) = [1 - nflef’z]
~ exp(—e7) = G(2),

n

again the Gumbel distribution. Similarly, if {X;} " No(u,0?) (now with arbitrary mean and
variance) then we simply change the location and scale to find that with b, := g — o® !(1/n) and
ay = —o/®71(1/n) we have

X — —z
P{"ibngz] —G(z)=¢€e"°

Qnp

with median
mt =p—o® 1(1/n) + (loglog2)o/d 1 (1/n)

n

growing like o+/2logn as n — oo.
Typically unbounded distributions like the Exponential and Normal (as well as the Gamma,

Weibull, etc.) whose tails fall off exponentially or faster will have this same Gumbel limiting
distribution for the maxima, and will have medians (and other quantiles) that grow as n — oo at
the rate of (some power of) logn.

1.3 Example 3: Pareto Distribution

Distributions with “fatter tails” (i.e., those for which P[X > x| falls off no faster than a power
of x) will have a different limit. For example, let {U;} be iid Uniform random variables and set
X; =1/Uj; then X; has the “unit Pareto distribution” determined by

PIX; > ] =1/, r>1
and the maximum X' of n iid unit Paretos will satisfy
PIX; <anz+by] = (1 —[anz + bn]_l)n anz + b, > 1.

With a,, :=n and b, := 0,

—(1- L)" el G(2), Z>0, (2)

nz
the “unit Fréchet Distribution”. Similarly for X; = erfl/ “ with the Pa(a, €) distribution satisfying
PX; > x] = * /2, x> €,
set a, := n'/%¢ and b, := 0 to find

1 —a
PIX) <apz+b,] = (1 — —zfo‘)n —e’ =G(z]a), z >0,

S



the Fréchet distribution with shape parameter o > 0. The Fréchet median is (log2)~"/%, so X
has median
my, = nl/o‘e(log 2)_1/0‘

that grows like a power of n, while the mean is infinite if &« < 1. The distribution is only Lo for
a > 2, in which case a, grows more slowly than \/n. This limiting Fréchet behavior is typical for
heavy-tailed distributions such as the ¢, a-stable, and Pareto.

1.4 Example 4a: Minima for the Weibull and Beta Distributions

For a, 8 > 0, the 1/a’th power of an exponential Ex(/3) random variable has the Weibull We(a, /3)

distribution, with Survival Function (SF) G(z) = P[X > z] = exp(—[z?) for = > 0. It follows that
the minimum X, of n iid We(q, ) random variables satisfies

(a3 n (a3
P[X*n > -T] = {eiﬂx } = einﬂx s
again Weibull but now with the X, ~ We(«, nf3) distribution. For (X, —by,)/a, to have a limiting

distribution we need

Gnp

p {L‘” mLI } _ e nBlbutan)®

to converge to a function of z as n — co. Evidently it will converge to e—*" (z > 0) for b, := 0 and
an == (nB)~1/*, the Weibull We(a, 1) distribution.

The probability that a random variable X ~ Be(q, 3) lies below a small number ¢ > 0 is

t t
PIX <t]= c/ 21— 2) e & c/ e = (c/a)t®
0 0

for ¢ := I'(a + B)/T(«)T'(B), with a relative error no more than (1 —¢)?~1, so the probability that

the minimum X, of n variables {X;} i Be(a, 3) exceeds t = by, + za, for z > 0 is
P{ X > by + zan} = [1 = (c/a)(by + 2a,)"]"

or, for b, = 0 and a,, = (a/nc)"/*,
=(1—-2%/n)" = exp (- z%),

again the Weibull We(a, 1) limiting distribution for the minimum.

1.4.1 Example 4b: Beta Distribution Maximum

Let {X;} i Be(f3, ) and set Y; := [1 — X;]. Then {Y;} b Be(a, f) and X)) =1 — Y, so
P{Lﬂ_bn <z} :P{—Y*n_(l_bn) > —z}
an Qn
~ e (727 2 <0



for b, := 1 and a,, := (a/nc)/®, with ¢ as before, now for z < 0. This is called the reversed Weibull
distribution, with CDF and pdf

Gizla)y=e 3" 2<0 (3)
g(z | ) = a(=2)*te U 1y,

with median m’ = —(n/log2) Y increasing to zero as n — oc.

Similarly the maximum X of n iid uniform random variables X; ~ Un(L,R) on an arbitrary
interval has limiting distribution:

Pla [ — by] < 2] = PIX} < anz + )
R—a,z—b,]"
R—-L
=(1+4+z/n)" =€ it —n<2<0

= 11— ifL<apz+0b, <R

for a,, := (R — L)/n and by, := R, the unit Reversed We(1,1) Weibull. Now the median for X is
m,, = R— (R — L)(log2)/n,

increasing at rate 1/n to a finite upper bound of R. The suitably standardized minimum and max-
imum of n independent Be(c, 3) random variables have asymptotic We(a, 1) and reverse We(/3,1)
distributions, respectively. These are typical of the maximal behavior for bounded random variables
with continuous distributions.

1.5 The Three Types Theorem

Fisher and Tippett (1928) first proved that location-scale families of these three distributions—
Gumbel (1), Fréchet (2), and reversed Weibull (3)— are the only possible limits for maxima of
independent random variables. That is, if there exist nonrandom sequences a,, > 0 and b,, € R and
a nondegenerate distribution G' such that the maximum X := max;<, X; of iid random variables
{X;} satisfies

X:—b

P{M Sz}—)G(z) (4)
Qn

then G must be one of these three distributions: Gumbel, Fréchet, or reversed Weibull. Half a

century later Daniel McFadden (1978) discovered that all three of these limiting distributions could

be expressed in the same functional form as special cases of a single three-parameter “Generalized
Extreme Value” (GEV) distribution, with CDF

Glas11,0,6) = exp {— Lee(20)] 1/&} )

which reduces to the Fréchet with v = 1/¢ if £ > 0, reversed Weibull with @ = —1/¢ if £ < 0,
and Gumbel as £ — 0 (see Appendix A.5 on p. 17 for more details). In some ways I feel this was
unfortunate, because now it is common for people to model and fit the GEV without thinking very



clearly about the specific form of their data and distributions. Also, point estimates will (almost
surely) never be exactly é = 0, so the Gumbel (which, you will recall, was the limit distribution for
Exponential, Gamma, Normal, and other distributions whose tails fall off exponentially) will never
be identified as the limit.

The key idea for the three-types theorem is to notice that any distribution G satisfying (4) must
also have the property that for all n, the maximum of n independent random variables with CDF
G must also (after suitable shift and scale changes) have CDF G— i.e., that for any n there exist
constants a, and b,, such that for all z € R,

G(2)" = G(ap z + by).

It turns out that the only CDF that satisfies this equation is (5), with a,, = n¢ and b, = (nf—1)0/¢,
or a, =1 and b, = ologn for the Gumbel case £ = 0.

2 Threshold Exceedances

In this section we’ll explore a different way of looking at the same limiting distributions of maxima,
the “peaks over thresholds” or “PoT” approach.

As before let {X;} be iid for 1 < j < n and set! T} := in/z € (0,1). Let a, and b, be real
numbers and set Y; := a, X; + b,. The vector N(R;) of the numbers of points (7},Y;) in disjoint
rectangles R; := (s;,t;] X (uj,v;] with 0 <'s; < ¢; <1 and v < u; < v; < oo will have a multinomial
distribution with parameters n and j, where?

pi = (t; — s4) [F(anvi +b,) — Flapu; + bn)] .

For sufficiently large u and n, the {N(R;)} will be approximately independent Poisson random
variables, with means
)\i = np;.

Here we look for choices of a, and b, for which A\; has a simple form, and then exploit it.

2.1 Example 1: Weibull Distribution

If P[X; > 2] = e %" for # > 0, then for the choice b, := [3~logn]"/® and a, := b,/(alogn) we
have for all large enough =z,

n[l = F(ayz +b,)] = nexp (= Blanz + b,)*)
= nexp ( —log n(l + Z/Oé log n)a)
= nexp (—logn(1+ z/logn + o(1/ logn)))

—z

~e 7,

so {T},Y; = (X; —by)/ay,} have approximately the Poisson distribution on (0,1] x R with intensity
measure v(dtdy) = dte Ydy (illustrated in Figure (1)). A similar approach with suitable a,, b,
works for any other distribution in the Gumbel domain.

'The following results would be identical if instead we took {7}} Y Un(0,1).
?The approximation would be exact for {T;} S Un(0,1).



Peaks over Threshhold: We(1, 1)

2 '.otl'

Figure 1: Simulation of 1000 scaled Weibull draws. Horizontal line is at 95% quantile. Cumulative
maximum M; is shown as dotted line.

The maximum M; := max{Y; : T; <t} is a non-decreasing stochastic process on the unit interval
0 <t <1, with CDF

Fy(z) = P[M; < 7]
= P[No Poisson points in (0,¢] x (z,00)]

the Gumbel distribution. The events {M; < z} and {XE‘MJ <apz+ bn} are identical.

2.1.1 Related Max-Stable Process

Let {(7},Y;)} be the points of a Po(dt e=¥dy) random field on all of R x R, and let f(t) be any
positive function with finite Laplace transform. Define a random process by

Z(t) = Sl;p{ifj/f(i} —t)}



If f(t) =) a;14,(t) is a simple function, then
PlZ(t) < z] = HP[sup{Yj/ai <z: Tj—te A
; J
)

= H P[No Poisson pts in (A; +¢) x (a;z,00)]

1

= Hexp ( — |Ai|e_“"z)
i

= exp (—/ezf(s)ds> )

so Z(t) is a stationary process. For any (not necessarily simple) positive function f(t) on R?, the
same identity follows from LDCT.

2.2 Example 2: Pareto Distribution

If P[X; > 2] = %2~ for > ¢, then for the choice a, := en'/® and b,, := 0 we have for all large
enough z,

n[l = Flanz + ba)] = n(e*(en'/*2)™)

—Q
)

so {T},Y; = (X; —by)/an} have approximately the Poisson distribution on (0, 1] x Ry with intensity
measure v(dtdy) = dtay=*"'dy. A similar approach with suitable a,, b, works for any other
distribution in the Fréchet domain.

The maximum M; := max{Y; : T; <t} is a non-decreasing stochastic process on the unit interval
0 <t <1, with CDF
Ft(Z) = P[Mt S Z]
= P[No Poisson points in (0,¢] x (z,00)]

_ =tz
=€ ,

the Fréchet distribution. The events {M; < z} and {Xrntj < apz+ bn} are identical.

Note that the sum of the {Y; : T; < ¢} will be finite almost-surely if [*(z A Ll)az * tdz < oo,
t.e., if 0 < a < 1; in that case the non-decreasing process

Sp = Z{YJ : T < t}
is a fully-skewed a-Stable SII process with distribution
~ Stp (oc,ﬁ =1,y=tl'(l-a)cos 5*,0 = 0)

and the {Y;} are the “jumps” of S;. A similar representation holds for 1 < a < 2, but “compen-
sation” is required (sort of like subtracting an infinite drift from S;). There is no a-Stable process
for @ > 2, although the connection between Fréchet distribution and the Poisson point process
remains.



Peaks over Threshhold: Pa(1.5, 1)

0.20 0.25 0.30
| | |

0.15
|

0.10
|

0.05
|

0.00
|

Figure 2: Simulation of 1000 scaled Pareto draws. Horizontal line is at 95% quantile. Cumulative
maximum M; is shown as dotted line.

2.2.1 Related Max-Stable Process

Let {(T},Y;)} be the points of a Po(dtay=®~!dy) random field on all of R? x Ry, and let 0 <
f(t) € Lo(R?,dt). Define a random process by

Z(t) = Sl;p{lfjf(t — )}
If f(t) =3 a;l4,(t) is a simple function, then
P[Z(t) < z] = HP[sqp{Yjai <z:t-Tj €A
; j
= H P[No Poisson pts in (¢t — A;) x (z/a;,0)]

—Hexp — | Ail(2/a:)™)
ey (o0 [ o),

so Z(t) is a stationary process with a Fréchet Fr(a, ||f]|2) distribution. For non-simple 0 < f € L,
the same identity follows from LDCT.

10



2.3 Example 3: Beta Distribution

If X; i Be(a, 3) then for small e, 2~ =~ 1 for # > 1 — ¢ and so

P[Xj>1—e]%w/l (1—2)/'dx
1

No)t(d) )i,
o 0 D@r()
= Bwp PP T Tavs

For a, := (6B(a,3)/n)"/? and b, := 1, we have

nP[X; > apz +b,) = (1= anz —by)”

"
BB(a, )
= (—2)°, 2 <0
so {T1},Y; = (X; —by)/a,} have approximately the Poisson distribution on (0, 1] x R_ with intensity

measure v(dtdy) = dt B(—y)? 1 dy. A similar approach with suitable a,, b, works for any other
distribution in the Reverse Weibull domain.

The maximum M; := max{Y; : T; <t} is a non-decreasing stochastic process on the unit interval
0 <t <1, with CDF
Fi(2) = P[M; < 2]
= P[No Poisson points in (0,¢] x (z,00)]

= e*t(*z)ﬁ, z <0,

the reversed Weibull distribution. The events {M; < z} and {X E‘m | <apz+ bn} are identical.

The minimum of n iid Be(q,5) random variables can be studied in the same way; for a, :=
(aB(a, 3)/n)Y* and b, := 0, the points {T;,Y; = (X — by)/an} have approximately the Poisson
distribution on (0,1] x R, with intensity measure v(dtdy) = dtay®~'dy, and the cumulative
minimum m; = min{Y; : T; < t} is a non-increasing stochastic process satisfying P[m; > 2] = e "
for z > 0, the usual (un-reversed) Weibull.

2.3.1 Related Max-Stable Process

Let {(7},Y;)} be the points of a Po(dt ay® * dy) random field on all of RY x Ry, and let 0 < f(t) €
Lo(R%, dt). Define a random process by

2(1) = wf(v;/f(t - 1))}

11



If f(t) =) a;14,(t) is a simple function, then
PZ(t) > z] = HP[sqp{Yj/ai >z t—1; € A
; j
)
= H P[No Poisson pts in (t — A;) x (0, z a4]]

_ lf[exp (= [Ail(za:)%)
= exp (—za/f(s)ad'S) ’

so Z(t) is a stationary process with a Weibull We (a, ||f||g) distribution. For non-simple 0 < f € L,,
the same identity follows from LDCT.

3 PoT Inference

Distribute points {y;} according to Po (Z/(dy)) and fix u in the support of v. Let J be the number
of points Y; > u (or Y; < u for the Weibull case), for v(dy) = ayy “ !dy (Fréchet) or v(dy) =
ayy®~tdy (Weibull) on R, , or v(dy) = ve~Y dy (Gumbel) on R. Denoting the density of v(dy) by
v(y), we can express the joint pdf for J and the J threshold exceedances {x;} as

sarat) =a* [T {na(20)] e {-n(*00) )

isJ

and regard it as a likelihood function for «, 7, and the scale and location parameters a, b. It can
probably be used to get MLEs and Fisher Information and maybe conjugate and Jeffreys’ priors.
The rate A, of exceedances of level u may also be interesting.

4 Multivariate EVT

In many application areas the problem arises of studying the extremes for random vectors. Ex-
amples include the daily prices or returns of multiple stocks, funds, indices, or other financial
instruments; precipitation levels at multiple locations; the size and transmission speed of internet
streams; or wind speeds and wave heights at vulnerable locations. Extreme value theory is much
less well-developed for multivariate random vectors than it is for univariate quantities.

The customary approach to studying the distribution of extremes for random wvectors begins by
transforming each component of the vector to a standard EV distribution (often the “unit Fréchet”
with CDF G(z) = exp(—1/z)), then exploring dependence among the components. The initial
transformation is most often performed parametrically by estimating the three parameters of the
GEV separately for each dimension; then transforming to uniformity by the CDF for that GEV
(usually ignoring uncertainty in the parameter estimation), then to unit Fréchet by the inverse
CDF G7(u) = —1/logu.

12



4.1 Asymptotic Dependence & Independence

Let (X,Y) be a two-dimensional random vector with unit Fréchet marginal distributions. The
extremal indez, denoted 6 by some authors (such as Smith and Weissman, 1994), and x by others
(including Coles et al., 1999, whom we follow here), is

X = lim PY >z | X > 2] (6)
22— 00
P[X Y
g P2 Y2 by sy s )
=00 1 —exp(—1/z) 2—00

This expression is both symmetric in X and Y, and invariant under (identical) component-wise
monotone transformations.

Evidently v, when it exists, takes values between 0 and 1. The components X and Y are called
asymptotically independent if x = 0. Surprisingly (for most of us, anyway), every nondegenerate
bivariate normal distribution (even one with correlation p = 0.9999) is asymptotically independent.
If we take the monotone transformation to unit No(0,1) marginals with covariance p < 1, then

Y| X ~No(pX, 1-p?) so

Yy _ _ _
P[Y>z|X:m]:P[ pr = px}:@(i’”px)

>
V1=p2 1 -—p? 1—p?
1 o0 —
P[Y>Z|X>z]:m/ @(%) o(x) dx
. —
_ Ll r(p—=1)z
A;@<\/T—p2)—>0a82—>00

for any p < 1.
Any value of y € [0,1] is possible. To see this, take 0 < A <1 and consider the “bivariate logistic

model” with CDF .
G(x,y) = exp {— (2712 4y }

for A > 0, and G(z,y) = exp ( — 1/ min(xz,y)) (the limit) for A = 0. Evidently X and Y each have
unit Fréchet marginals (take the limits z — oo and y — o0), and

_ PIX >z Y > 7]
A= =T N
. 1 —-PX<z2]-PY <z]+PX <z Y <]
= lim
2500 1 -P[X <]
1 -2G(2) + G(z,2)

= lim 1-G(2)
B . 1 -G(z2)
=2 e n

_ 9\
9 lim I —exp(=2"/2)
z=00 1 —exp(—1/z)

by L’Hopital’s rule. This ranges from 0 to 1 as A ranges from 1 to 0.

13



4.2 Multivariate EV Distributions

Let {(X;,Y;)} be iid random vectors in R? with Fréchet marginals and, for n € N, denote the
component-wise maxima by:

M, = (X Y* X := max X; Y := max Y.
n ( no n)7 n 1<i<n (3] n 1<i<n ?

Then
PIX,/n <z]=P[X; <nz]" = (efl/nz)" S v

and similarly P[Y;*/n < 2] = e/, so both marginals of M, /n are unit Fréchet.

Theorem 1 If there exists a non-degenerate bivariate distribution G(x,y) such that My,/n =
G(x,y) as n — oo, i.e., that

PIXS < nw, Yy <nyl = G, y),

then
Gla,y) = e VoY) (7)

for a nonnegative function V : Rﬁ_ — Ry of the form

Vi, y) = 2/A1 max (%%) H{(do) (8)

for some probability measure H(do) on the unit simplex A' C Ri with mean
/ o H(do) = (L,1). (9)
Al

Every such “spectral measure” H gives rise to a bivariate extreme value distribution; below we’ll
motivate this by showing how H arises and where (8) comes from. From Eqns (7, 8), the marginal
distribution function for X must be G(z,00) = exp ( — V(z,00)) = exp( — 2 [y, 0 H(do)/x,
so (9) is simply a standardization condition ensuring that X and Y have unit Fréchet marginal
distributions. Meanwhile, let’s set G(z) := exp(—1/x) and note that the extremal index of (6) can
also be calculated as x = lim,_,; x(u) for

PI[G(X) > u, G(Y) > u]

x(w): = P[G(X) > u]
1= P[G(X) < u] - PIG(Y) < u] + PIG(X) < u, G(Y) <]
- PIG(X) > u]
1 -2u+P[G(X) <u, GY) < u
N 1—wu
L PO <u GOY) <4
1—wu
9 log P[G(X) liguql G(Y) < 01— )
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since log(1 — €) = —e + O(e?) for e ~ 0. With u = G(z), or z = —1/logu, we have P[G(X) <
u, GY)<u]=P[X <2, YV <2]=G(z,2) =exp (- V(z,2)) so

_ —Vi(z,2)

X(u) =2 1/

=2—-2V(z,2)
and by (8) in the limit we have

xX=2-2 max (o1, 09) H(do).
Al

This will be zero if and only if max(oy,09) is one on the support of H, i.e., if and ounly if H is
supported entirely on the boundary A = {(0,1), (1,0)}.

4.3 Poisson Connection

Let H be a probability measure on Al satisfying (9), and consider a Poisson random measure
N(dx dy) on the first quadrant whose intensity can be written 2H (do)r~2dr in polar coordinates
r=x+y,o=(x,y)/r. Let X* and Y* denote the maxima of the x and y coordinates of the mass
points of N(dx dy), respectively. For =,y > 0 the event that [X* < z, Y* < y] is just the event
that N assigns zero points to ([0,z] x [0,y])°. We can compute this in polar coordinates as

PX* <z Y*<y]=exp {—/ . 2H(d0)r2dr}
(10,21 [0,91)
= exp {— / 2H (do) r2dr}
(ro1>z) || (roe>y)

exp {— / 2H (do) Tzd’"}
r>min(x/o1,y/o2)

~e - [, sz 1))

:exp{_z [ max (22,%2) H(da>},

exactly the same as G(x,y) from (7). Thus for large n the extremes of the vectors {(X;/n,Y;/n)},
1 < j < n behave like the extremes of a Poisson point cloud with intensity measure 2H (do)r—2dr.

In d > 2 dimensions the same things work, of course, with Poisson intensity measure dH (do)r=2
on Ri = AL xRy,

Coles et al. (1999) also define a second index

2log P[X > 2]

o0 logP[X >z, YV > 7] ’

taking values in the interval [—1, 1], which depends on the minimum of X,Y in the tails; they argue
that it measures a degree of dependence for asymptotically independent variables (those for which
X = 0). It vanishes for independent X,Y, and takes the value +1 for fully-dependent X =Y.
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A Appendix: A Few Less Familiar Distributions

Several distributions pop up when exploring extremes that are less studied than the usual suspects;
here we collect a bit about them.

A.1 Pareto

If U ~ Un(0,1) and a > 0, then X = U~/* has the Pareto distribution taking all values in (1,00).
The survival function (SF) and density function (pdf) are

PIX > 2] =P[UTY® > 4]
=PU <z 9]
=x ¢ x>1
fla) =ax™ 1y
This is the prototype “heavy-tailed” distribution, whose SF and pdf fall off like powers of = (instead

of the exponential fall-off typical of most commonly-studied distributions). The mean is infinite for
a<1,and 1/(a — 1) < oo for a > 1; the variance infinite for a < 2.

It is frequently taken to be part of a two-parameter scale family (Y := eX ~ Pa(q,¢), taking all
values in (€,00)) and less commonly part of a three-parameter location/scale family.

A.2 Gumbel

If Y ~ Ex(1) is a standard exponential random variable, then X = —log Y has the standard Gumbel
distribution taking all values in R. The CDF and pdf are

PIX < 2] =P[Y > ¢

fla) = e

and the mean is EX = 7, =~ 0.5772, the Euler-McLaren constant. Since the mode is zero, the
distribution is skewed to the right; the tail probabilities fall off exponentially as x — oo, but much
faster as @ — —oo. It is commonly taken to be part of a two-parameter location/scale family.

A.3 Fréchet

If Y ~ Ex(1) is a standard exponential random variable and a > 0, then X = Y ~'/® has the
standard Fréchet distribution taking all values in R, . The CDF and pdf are

PIX <z]=P[Y >z 9], x>0

= 67x*0t

fla) = az™7e™ "1
and the mean is EX = I'(1 — 1/«a) for @ > 1, or infinity for @ < 1. The variance is infinite for

o < 2. The mode (1 4+ 1/a)~"/¢ and median (log 2)~'/® are well-defined for all a > 0.
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This too is a heavy-tailed distribution, with SF and CDF falling off at the same rates as the Pa(a).
It is commonly taken to be part of a three-parameter location/scale family.

A.4 Weibull

If Y ~ Ex(1) is a standard exponential random variable and o > 0 then X = Y'%/® has the Weibull
distribution taking all values in Ry. The SF and pdf are

P[X > z] =P[Y > z%], x>0

_ e
:eI

fl@) = az® e " 1y,

and the mean EX =1I'(1 + 1/«) and variance are finite for all o > 0.

It is commonly taken to be part of a two-parameter scale family, with SF S(z) = exp(—px®) and
hence hazard function

aBz®!exp (—pr%)
exp (—fz®)

a monomial in z that can be either increasing (for a > 1) or decreasing (for a < 1) to model failure
times for systems with either increasing or decreasing instantaneous hazard.

If X ~ We(q,1) has the Weibull distribution then Z := —X has the reversed Weibull distribution,
with pdf

h(x) = f(x)/S(x) =

Lips0) = B2 sy,

9(z) = a(=2)* e T 1L ).

A5 GEV

McFadden (1978) discovered that location/scale families built on the Gumbel, Fréchet, and reversed
Weibull distribution were all special cases of the Generalized Extreme Value distribution, with
conventional CDF parameterization given by:

G(w;u,a,ﬁ)zexp{— {1+§<x;H>]1/§} (5)

for those x satisfying 1+ &(x — p)/o > 0, and pdf:

st (5] e foc (2]

Note the range of GEV depends on the sign of £: X € (u—o0/&,00) for £ >0, X € R for £ =0, and
X € (—oo,u — o /&) for £ < 0. Evidently (5) is a location/scale family built on a standard GEV
distribution (¢ =0, o = 1) with CDF and pdf:

Gla;8) = exp{— (1+€x) Y5}
glws€) = [+ €] o exp { - (14 €2) 75}
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The standard Gumbel, Fréchet, and reversed Weibull can each be expressed in terms of G(x; u, 0, §)
from (5):

Fréchet: exp(—z %) =Gx;p=1, o= é,f = é)a >0
Gumbel: exp(—e™) =G(x;p=0, o=1,£=0), §=0
Rev Weibull:  exp (—(—2)%) = G(x; p = —1,0 = éaf = —é% £<0

Note that if {X;} iy GEV(u,0,€) then X = wax {X;} ~ GEV(u*,0*,€) for pu* := p+o(n¢ —1)/¢

and o* := onf, i.e., the maximum of the first n also has the GEV distribution with the same shape
parameter £, larger location parameter p* > p, and scale o* that is larger (resp, smaller) than that
of X; if £ > 0 (resp, ¢ < 0). This property (that G(x;pu,0,8)" = G(x;pk, o), &) for some p and
oy, for each n € N) characterizes the GEV, and is the basis for the Three Types theorem.

A.6 GPD

If X ~ GEV(u,o,¢) for £ > 0 with CDF

G@xuwn€)=eXp{—-P-Ff(xl;u>]_ug} (5

then for y > 0 the exceedances Y = [X — u] of a high level u > p — 0/¢ satisfy

~—

PY >y|Y >0=PX>y+u|X >u
1—exp { = [1+¢ (L2t)] 7}
T—exp{— [L+¢(552)] )
LR e
T e

:[o+aw+u—uq*“
c+&( u—p)
=[1+¢ey/o] Ve, w/o=o+E(u—p).

This is the generalized Pareto distribution GPD(&,6), with CDF H(y) = 1 —[1 —l—fy/&]_?_l/6 for
y > 0 and mean

E[Y1=/0°°H<y>dy=&/<1—a>, £<1

(or infinity if £ > 1), so for 0 < £ < 1 (i.e., the Fréchet case with a > 1),

o—&p § o §
EX —ul|X = = _
[ u| X > u 1_£+1_§u 1_£+1_§(u )
is linear in u with a slope that determines £. The variance of the GPD is also available in closed
form, infinite for £ > % and, for 0 < ¢ < %,

&2 _ E[Y)?
(1—-6)32(1—-2¢) 1-2¢

VIX | X >u]=V[Y]=
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For 0 < £ < oo, when X has a Fréchet distribution, the GPD is a scaled (by £/&) and offset (to
zero) version of the ordinary Pareto distribution. It has the interesting property that, for any v > 0
and y > 0,

[+ &y +v)/a] ME {stsy]—”ﬁ
[1+¢&(w)/6)"ve b+ Ev
=[1+&y/d|7VE, 6 =6+ 6o,

PY >y+v|Y >uv]=

i.e., the conditional distribution of (Y — v) given [Y > v] is again GPD(¢,d").

This is the key to estimating the shape ¢ and threshold uy above which extremes are modeled
sufficiently well by the GPD, a black art. A plot of the empirical “Mean Residual Life” (MRL) YV :=
(X —u), plotted against u, should be approximately linear above some threshold uy. Unfortunately
the variation around that line gets wider and wider with increasing u (because the MRL is estimated
on the basis of fewer and fewer extreme events as u increases). The variance and mean calculations
above should make it possible to generate error bars.

A common estimator of £ = 1/« in the Fréchet case is “Hill’s Index” (Hill, 1975). Let {X(i)} be
the order statistics (with X(;) the largest) for an iid sample of n € N observations {X;} and, for
each 1 <k < n, set

k
1 X
HY =~ log .
g k ZZ_; X(k+1)

This is just the MLE based on the observations that exceed an order statistic. Resnick and Starica
(1998) showed it to be consistent as k — oo and n/k — oo, even for many dependent sequences.
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