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10 Conditioning

Frequently in probability and (especially Bayesian) statistics we wish to find the probability
of some event A or the expectation of some random variable X, conditionally on some body
of information— such as the occurrence of another event B or the value of another random
variable Z (or collection of them {Zα}). In elementary probability we encounter the usual
formulas for conditional probabilities and expectations

P[A | B] =
P[A ∩ B]

P[B]
E[X | Z] =







∫
x f(x,Z) dx∫

f(x,Z) dx
X, Z jointly continuous

∑
x f(x,Z)∑

f(x,Z)
X, Z discrete

but this notion breaks down either for distributions which are not jointly absolutely contin-
uous or discrete, and also when we wish to condition on the value of infinitely-many (even
uncountably-many) random variables {Zα}, as we will when we consider stochastic processes.
There simply is no such thing as a joint density function for an infinite collection {Zα}, even
if each finite set has an absolutely continuous joint distribution.

Since “information” in probability theory is represented by σ-algebras (here σ {B} or σ {Zα}),
what we need are ways to express, interpret, and compute conditional probabilities of events
and conditional expectations of random variables, given σ-algebras. As a bonus, this will
unify the notions of conditional probability and conditional expectation, for distributions
that are discrete or continuous or neither. First, a tool to help us.

10.1 Lebesgue’s Decomposition

Let µ and λ be two positive σ-finite measures on the same measurable space (Ω, F). Call µ
and λ equivalent, and write µ ≡ λ, if they have the same null sets— so the notion of “a.e.” is
the same for both. More generally, we call λ absolutely continuous (AC) w.r.t. µ, and write
λ ≪ µ, if µ(A) = 0 implies λ(A) = 0, i.e., if every µ-null set is also λ-null (so λ ≡ µ if and
only if λ ≪ µ and µ ≪ λ). We call µ and λ mutually singular, and write µ ⊥ λ, if for some
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disjoint sets A, B ∈ F we have µ(Ac) = 0 and λ(Bc) = 0, so µ and λ are “concentrated” on
disjoint sets.

For example— if λ(A) =
∫

A
f(x)µ(dx) for some F -measurable function f : Ω → R+, then

λ ≪ µ; if f > 0 µ-a.s, then also µ(A) =
∫

A
f(x)−1λ(dx) and µ ≡ λ. If for some other σ-finite

measure ν and some F -measurable f, g : Ω → R+ we set

µ(A) :=

∫

A

f(x)ν(dx) λ(A) :=

∫

A

g(x)ν(dx)

then µ ⊥ λ if f(x)g(x) = 0 for ν-a.e. x ∈ Ω. The functions f and g are called the densities of
µ and λ with respect to ν, generalizing the familiar idea of density functions w.r.t. Lebesgue
measure.

Theorem 1 (Lebesgue Decomposition) Let µ, λ be two σ-finite measures on a countably-

generated1 measurable space (Ω, G). Then there exist a unique pair λa, λs of σ-finite measures

on (Ω, G) and a unique G-measurable function Y ≥ 0 such that:

λ = λa + λs

λa ≪ µ, λs ⊥ µ

λa(G) =

∫

G

Y (ω)µ(dω), G ∈ G.

Proof Sketch. First take λ finite. Set

H :=
{

h ∈ L1(Ω, G, µ) : h ≥ 0, (∀G ∈ G)

∫

G

h dµ ≤ λ(G)
}

Show that H is closed under maxima, then find simple {hn ≥ 0} ⊂ L1 such that

sup

{∫

hn dµ : n ∈ N

}

= sup

{∫

h dµ : h ∈ H

}

and set h := sup hn and Y := h1{h<∞}. Now verify the statement of the Theorem. The
extension to σ-finite λ is straightforward (why?).

To show uniqueness, suppose λ = λa + λs = λ′
a + λ′

s are two decompositions with λa(dω) =
Y (ω)µ(dω) and λ′

a(dω) = Y ′(ω)µ(dω). Find a single disjoint pair A, B ∈ G with λs(A
c) =

λ′
s(A

c) = 0 and µ(Bc) = 0, and set G := {ω : (Y − Y ′) > 0}. Show that if µ(G) =
µ(G ∩ B) > 0 then also λa(G) > λ′

a(G), but λs(B) = λ′
s(B) = 0, a contradiction.

If µ(dx) = dx is Lebesgue measure on R
d, for example, then this decomposes any probability

distribution λ into an absolutely continuous part λa(dx) = Y (x) dx with pdf Y and a singular
part λs(dx) (the sum of the singular-continuous and discrete components).

1For example, the Borel sets on any complete separable metric space.
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When λ ≪ µ (so λa = λ and λs = 0) the Radon-Nikodym derivative is often denoted

Y =
dλ

dµ
=

λ(dω)

µ(dω)
,

and extends the idea of “density” from densities with respect to Lebesgue measure to those
with respect to an arbitrary “reference” (or “base” or “dominating”) measure µ. For exam-
ple, the pmf f(x) = P[X = x] of an integer-valued random variable X may now be viewed
as the pdf of its distribution with respect to counting measure on Z, so families of discrete
distributions now have pdf’s (if they take values in a common countable set), and random
variables with mixed distributions (truncated normals, for example) have density functions
with respect to a dominating measure that includes point masses where the distributions
have atoms, and Lebesgue measure where they are absolutely continuous. With respect to
the finite base measure λ(A) :=

∑
{1/k! : k ∈ A} on the nonnegative integers N0, for

example, the Po(λ) distribution has pdf f(k) = λke−λ.

To explore further conditioning we apply Lebesgue’s decomposition in a quite different way,
with µ = P a probability measure on (Ω, F , P) and λ(dω) = X dP for some X ∈ L1 a σ-finite
measure to prove the important:

10.2 The Radon-Nikodym Theorem

Theorem 2 (Radon-Nikodym) Let (Ω, F , P) be a probability space, X ∈ L1(Ω, F , P) an

integrable random variable, and G ⊂ F a sub-σ-algebra. Then there exists a unique integrable

Y ∈ L1(Ω, G, P), which we will denote Y = E[X | G] and call a “conditional expectation of

X, given G,” that satisfies for every G ∈ G:

(∀G ∈ G) E (X − Y )1G = 0

The important feature to notice is that Y must be G-measurable, which may be hard to
achieve if G is much smaller than F . In some sense Y is the best possible G-measurable
approximation to X.

Proof. First take X to be non-negative, X ≥ 0. The measure P, initially defined on all
of F , can also be viewed as a probability measure on the smaller σ-algebra G ⊂ F . Define
another measure λ on G (not on all of F) by

λ(G) := EX 1G =

∫

G

X(ω) P(dω), G ∈ G.

This is bounded (since X ∈ L1(Ω, F , P)) and positive (since X ≥ 0), so by Theorem 1
(applied on (Ω, G, P), not (Ω, F , P)) we can write λ = λa + λs with λa ≪ P, λs ⊥ P, and
λa(G) =

∫

G
Y dP for some Y ∈ L1(Ω, G, P). But λ ≪ P by construction, so (by uniqueness)

λs = 0, λa = λ, and the Theorem follows.
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For general X, consider separately the positive and negative parts X+ := max(X, 0) and
X− := max(−X, 0) and set Y := Y+ − Y−.

For events A ∈ F and sub-σ-algebras G ⊆ F we denote the conditional probability of A,

given G by
P[A | G] = E [1A | G] ,

a G-measurable random variable (not a numerical constant) taking values in [0, 1].

Of course X itself has the property that its integrals over events G ∈ G coincide with those
of X— the point is that Y = E[X | G] is a G-measurable approximation to X (i.e., one that
depends only on the “information” encoded in G) with this property. As we’ll see below, if
F ⊆ G (or, more generally, if X is G-measurable, so σ(X) ⊆ G) then the best G-measurable
approximation is E[X | G] = X itself. At the other extreme, if X is independent of G, then
one can do no better than the constant random variable E[X | G] ≡ EX.

10.2.1 Key Example: Countable Partitions

If G = σ{Λn} for a finite or countable partition {Λn} ⊂ F (so Λm ∩ Λn = ∅ for m 6= n and
Ω = ∪Λn), then for any X ∈ L1(Ω, F , P),

E[X | G] =
∑

1Λn
EΛn

[X] =
∑

1Λn
(ω)

1

P[Λn]
E[X 1Λn

]

is constant on partition elements and equal there to the P-weighted average value of X (omit
from the sum any term with P[Λn] = 0).

In particular— let (Ω, F , P) be the unit interval with Lebesgue measure, and let Gn :=
σ{(i/2n, j/2n]}, 0 ≤ i < j ≤ 2n. Note that Gn ⊂ Gm for n ≤ m and that F =

∨
Gn. Then

for any X ∈ L1(Ω, F , P),

Xn := E[X | Gn] = 2n

∫ (i+1)/2n

i/2n

X(υ) dυ, i/2n < ω ≤ (i + 1)/2n, 0 ≤ i < 2n.

For m > n the conditional expectation Y := E[Xm | Gn] would have to be Gn-measurable
and satisfy 0 = E(Xm − Y )1G for each G ∈ Gn— but Xn satisfies both those criteria,
since E(Xn − X)1G = 0 = E(Xm − X)1G for all G ∈ Gn ⊂ Gm. This is our first example
of a martingale, a sequence of random variables Xn ∈ L1(Ω, F , P) with the property that
Xn = E[Xm | Gn] for n ≤ m; we’ll see more soon. What happens to Xn as n → ∞?

10.2.2 Properties:

• The conditional expectation is almost unique: if Y1 and Y2 are each G-measurable and
for some X ∈ L1(Ω, F , P) and all G ∈ G satisfy

E(X − Y1)1G = 0 = E(X − Y2)1G,
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then each may be called “E[X | G]” but they may not be equal for all ω ∈ Ω. The
difference (Y1 − Y2) is G measurable and is zero almost-surely, since E|Y1 − Y2| =
∫

G
(Y1 − Y2)dP +

∫

Gc(Y2 − Y1)dP = 0 for G := {Y1 > Y2} ∈ G, but still may not
vanish for all ω ∈ Ω. Thus one speaks of “a” conditional expectation rather than “the”
conditional expectation.

• If X = 1A and if G = σ{B} for some A, B ∈ F with 0 < P[B] < 1,

P[A | G](ω) = E[1A | σ(B)](ω) =

{

P[A ∩ B] /P[B] ω ∈ B

P[A ∩ Bc]/P[Bc] ω /∈ B

Thus, conditional expectation (given a σ-algebra G) generalizes the notion of the con-
ditional probability of one event A given another B (or its complement Bc).

• More generally, If X ∈ L1 and if G = σ{Gi} for some (finite or countable) measurable
partition {Gi} ⊂ F , then

E[X | G](ω) =
∑

1Gi
(ω)

1

P(Gi)

∫

Gi

X(ω′) P(dω′)

is the weighted average of X over the partition element that contains ω.

• If X is a RV on (Ω, F , P) and G ⊂ F , the function-valued random variable

FX(x | G) := P[X ≤ x | G]

(a (B×G)-measurable function of x ∈ R and ω ∈ Ω) is a conditional CDF of X,

given G. It satisfies (almost surely) the usual CDF properties— non-decreasing, right
continuous, with limits 0 and 1 as x → −∞ and x → ∞, respectively. If this is
absolutely continuous, i.e., if there is a random Borel function (i.e., (B×G)-measurable)
fX(ξ | G) ≥ 0 on R × Ω such that (∀x ∈ R)

FX(x | G) =

∫ x

−∞

fX(ξ | G) dξ a.s.,

then fX(ξ | G) is called a conditional pdf of X given G and for any Borel function g
such that g(X) ∈ L1 we can evaluate conditional expectations by:

E
[
g(X) | G

]
=

∫

R

g(x)fX(x | G) dx.

• Notation: If X ∈ L1(Ω, F , P) and G = σ(Z) for some RV Z, then “E[X | Z]” is a short
way of writing E[X | σ(Z)] or E[X | G]. Recall Y is σ(Z)-measurable if and only if it
can be written in the form Y = φ(Z) for some Borel function φ : R → R (obvious for
simple RVs Y , then take monotone limits).
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• In particular, if X ∈ L1(Ω, F , P) and Z is any RV, then for G = σ(Z) the quantity

FX(x | Z) := P[X ≤ x | Z]

is a Borel-measurable function of x and Z, called the conditional CDF of X given Z. If
that function is absolutely continuous in the x variable almost-surely, i.e., if for some
Borel function fX(· | ·) ≥ 0 on R

2

FX(x | Z) =

∫ x

−∞

fX(ξ | Z) dξ a.s.,

then fX(x | Z) is the conditional pdf of X, given Z and for any Borel g s.t. g(X) ∈ L1,

E
[
g(X) | Z

]
=

∫

R

g(x)fX(x | Z) dx.

• If X, Z ∼ f(x, z) are jointly absolutely-continuous, g(X) ∈ L1, and G = σ(Z),

E[g(X) | Z] := E[g(X) | σ(Z)] =

∫

g(x)

{
f(x, Z)

∫
f(ξ, Z) dξ

}

dx.

Thus, conditional expectation (given a σ-algebra G) generalizes the elementary notion
of conditional expectation (given an RV Z), with conditional pdf given explicitly by

fX(x | Z) =
f(x, Z)

∫
f(ξ, Z) dξ

.

What if X and Z are both discrete? What if just one is discrete? What if Z is a
vector?

To prove this property, first recall that a random variable is G = σ(Z) measurable if
and only if it is a Borel function of Z. Apply this to write E[g(X) | G] = φ(Z); then
for G ∈ G, solve the equation 0 = E1G[φ(Z) − g(X)] for φ(Z).

• If X ∈ L1(Ω, F , P) and if X ⊥⊥ G then

E[X | G] ≡ EX.

In particular, E[X | {Ω, ∅}] = EX. Thus, conditional expectation (given a σ-algebra
G) generalizes the elementary notion of expectation.

• If X ∈ L1(Ω, F , P) and if H ⊂ G ⊂ F , then

E[X | H] = E
[

E[X | G]
∣
∣ H

]

This is called the “tower” (or sometimes “smoothing” or “telescoping”) property of
conditional expectation. It’s especially useful when we have entire nested families
(called filtrations) of σ-algebras {Fn} with n ≤ m ⇒ Fn ⊆ Fm; for example, Fn :=
σ{Xj : j ≤ n} for a family {Xn} of (non-necessarily-independent) random variables.
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• A common use of the tower property is the calculation for G-measurable X with
Y, XY ∈ L1(Ω, F , P), that

E[XY | G] = X E[Y | G].

Thus G-measurable RVs like X can be pulled out of conditional expectations just like
constants. The case G = σ(X) is most common: E[XY | X] = X E[Y | X].

• If X and {Yn} are jointly Gaussian, then E[X | σ{Yn}] is the orthogonal projection
of X onto the linear span of {Yn} in the Hilbert space L2(Ω, F , P). This is usually
the easiest way to compute conditional expectations in multivariate normal examples.
Thus, conditional expectation (given a σ-algebra G) generalizes the notion of orthogonal
projection, for Gaussian RVs. This does not generalize to non-Gaussian L2 variables;
however,

• L2 prediction: For X ∈ L2, E[X | G] minimizes ‖X − Y ‖2
2 among all G-measurable Y .

• Martingales: Let {Xn} ⊂ L1(Ω, F , P) be iid with means µ = E[Xn] and set Sn :=
∑

j≤n Xj and Gn := σ{X1, ..., Xn}. Then for n ≤ m,

E[Sm | Gn] = Sn + (m − n)µ;

it follows that (Sn − nµ) is a martingale. If {Xn} ⊂ L2(Ω, F , P), set σ2 := VXn and
check that (Sn − nµ)2 − nσ2 is also a martingale.

• Monotonicity: If X ≥ Z a.s., then E[X | G] ≥ E[Z | G] a.s. for any G ⊂ F . To see this,
set Y := E[X − Z | G] and G := {ω : Y < 0}. Since G ∈ G and (X − Z) ≥ 0 a.s.,
E[Y 1G] = E(X − Z)1G ≥ 0 so P[Y < 0] = P

[
E[X | G] < E[Z | G]

]
= 0 as claimed.

• Conditional Mean/Variance Formula: If X ∈ L2(Ω, F , P) and Y := E[X | G],

V[X] = E

{

E
[
(X − Y )2 | G

]}

+ V[Y ].

Thus the variance of X is the mean of the conditional variance plus the variance of the
conditional mean. This elegant formula is worth remembering.

• All the usual integration tools and inequalities— DCT, MCT, Fatou, Jensen, Hölder,
Minkowski, Markov, Chebychev, etc.— have conditional versions as well. For example,
for X ∈ L1 and convex φ(·) with φ(X) ∈ L1,

φ
(
E[X | G]

)
≤ E[φ(X) | G] a.s

Note both sides are G-measurable random variables now, not constants as in the fa-
miliar Jensen inequality, so the “almost surely” qualification is needed.
If 0 ≤ Xn ↑ X in probability, for another example, then

E[Xn | G] → E[X | G] a.s.,
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and also E
[
|Xn − X|

∣
∣ G

]
→ 0 a.s, a conditional generalization of Lebesgue’s MCT.

This MCT can be used to prove a conditional Fatou’s Lemma for Xn ≥ 0:

E
[

lim inf
n→∞

Xn | G
]

≤ lim inf
n→∞

E[Xn | G] a.s.

If Xn → X(pr.) and |Xn| ≤ Y ∈ L1 a.s., then again

E[Xn | G] → E[X | G] and E
[
|Xn − X| | G

]
→ 0 a.s.,

a conditional version of Lebesgue’s DCT. To prove this, just apply the conditional
Fatou’s lemma to the nonnegative RVs Y + Xn and Y − Xn to see

E[Y + X | G] = E[lim inf
n→∞

(Y + Xn) | G] ≤ lim inf
n→∞

E[Y + Xn | G] and

E[Y − X | G] = E[lim inf
n→∞

(Y − Xn) | G] ≤ lim inf
n→∞

E[Y − Xn | G].

Upon subtracting E[Y | G] and changing signs for the second equation, we conclude

E[X | G] ≤ lim inf
n→∞

E[Xn | G] ≤ lim sup
n→∞

E[Xn | G] ≤ E[X | G].
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10.3 An Example: Poisson Processes

Imagine that we are fishing at a site where, on average, we catch λ fish per hour. Imagine
further that the numbers of fish we catch in disjoint time intervals are independent. As we
shall see below, it follows that

• The number of fish caught by time t > 0 has a Poisson distribution Nt ∼ Po(λt) with
mean λt and, moreover, for any sequence of times 0 ≤ t1 ≤ t2 ≤ t3 ≤ · · · ≤ tn, the
numbers of fish caught in intervals (tj , tj+1] are independent Poisson RVs:

(
Ntj+1

− Ntj

) ind
∼ Po

(
λ(tj+1 − tj)

)

• The times of catching the first, second, third, etc. fish T1, T2, T3, · · · have iid increments

(Tj+1 − Tj)
iid
∼ Ex(λ).

and Gamma marginals Tj ∼ Ga(j, λ).

Proof. Fix t > 0. For large n, the number of fish caught in a short interval of time ( j
n
t, j+1

n
t]

will be zero or one with high probability (it’s hard to catch two fish in a millisecond!), so we
can view the number Nt caught in time t as (approximately) the total number of successes
in a fixed number n of independent trials, all with the same probability of success— so Nt

has, approximately, the Bi(n, pn) distribution for some success probability 0 < pn < 1. But
the expected number caught will be ENt = λt = n × pn, so pn = λt/n and for any k ∈ Z0

P[Nt = k] ≈

(
n

k

)(λt

n

)k(

1 −
λt

n

)n−k

=

k terms
︷ ︸︸ ︷

n(n − 1) · · · (n − k + 1)

k! (n)(n) · · · (n)
︸ ︷︷ ︸

k terms

(λt)k
(

1 −
λt

n

)n(

1 −
λt

n

)−k

→
(λt)k

k!
e−λt as n → ∞, so Nt ∼ Po(λt).

The event [T1 > t] that it takes longer than t hours to catch the first fish is the same as the
event [Nt = 0] that no fish are caught by time t, so

P[T1 > t] = P[Nt = 0] =
(λt)0

0!
e−λt = e−λt

for t > 0 and T1 ∼ Ex(λ). Similarly each increment (Tj+1 − Tj) ∼ Ex(λ), and all are inde-
pendent, so (marginally) the event times have Gamma distributions Tj ∼ Ga(j, λ). BTW,
this gives a simple way to compute Gamma probabilities. For t > 0, λ > 0, and j ∈ N,

pgamma(t, j, lambda, lower = F) = P[Tj > t] = P[Nt < j] = e−λt
∑

k<j

(λt)k/k!.
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With this example in hand, we can compute lots of conditional expectations. For example,
set Ft := σ{Ns : s ≤ t} and find:

• For t > 0, what is P[T1 ≤ t | T2]? What is P[T2 > t | T1]?

• For i < j, what is E[Tj | Ti]? What is E[Ti | Tj]?

• For s < t, what is E[Nt | Ns]? What is E[Nt | Fs]?

• For s < t, what is E[exp(iωNt) | Fs]?

• For s < t, what is E[Ns | Nt]? What is E[Ns | Ft]?

• For s < t, what is E[Nt
2 | Fs]?

How to compute conditional expectations

One way to solve in general for conditional expectations Y := E[g(X) | G] is to begin
by expressing what all possible G-measurable random variables look like— for example, if
G = σ(Z) then Y = φ(Z) for some Borel φ— and then find elements G ∈ G for which it
is easy to evaluate E

[(
g(Z) − Y

)
1G

]
and see what are the conditions on Y (e.g., on φ if

G = σ(Z)) that make it vanish. A second approach is to identify the conditional pdf for X
given G, and evaluate E[g(X) | G] =

∫
g(x) fX(x | G) dx.

The easiest way to identify the conditional expectations posed above is to exploit indepen-
dence, and to treat any variable on which we are conditioning as a constant. For example,
since (Nt − Ns) ⊥⊥ Fs for s < t,

E[Nt | Fs] = E[Nt − Ns | Fs] + E[Ns | Fs]

= λ(t − s) + Ns;

E[eiωNt | Fs] = E[eiω(Nt−Ns)eiωNs | Fs]

= E[eiω(Nt−Ns)]eiωNs

= exp
(
λ(t − s)(eiω − 1) + iωNs

)
;

E[Nt
2 | Fs] = E[(Nt − Ns)

2 + 2(Nt − Ns)Ns + Ns
2 | Fs]

= λ(t − s) + [λ(t − s)]2 + 2λ(t − s)Ns + Ns
2

Notice that Ft := σ{Ns : s ≤ t} is a σ-algebra generated by uncountably many random
variables Ns, but nevertheless we now are able to compute conditional expectations and
probabilities given Ft.
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10.4 Borel’s Paradox

Let (X, Y ) be the longitude, 0 ≤ X < 2π, and latitude, −π/2 ≤ Y ≤ π/2, of a point
drawn uniformly from a sphere S (perhaps the globe). What is its conditional distribution
of (X, Y ), given that it lies on a great circle C? This famously ill-posed question helps
motivate a careful consideration of conditioning. If the “great circle” is the equator Y = 0,
the answer is the (perhaps expected) uniform distribution, with longitude X ∼ Un

(
[0, 2π)

)
.

But if the great circle is, say, the prime meridian X = 0, then the point is much more likely
to be near the equator (where an interval of Y = 0 ±1 degree latitude has a large area) than
near either pole (where it doesn’t); in that case the conditional distribution of Y has density
f(y | x) = 1

2
cos(y)1[−π/2,π/2](y) for any 0 ≤ x < 2π.

We simply cannot condition meaningfully on the null event that (X, Y ) lies on a set of zero
probability, such as a great circle. We can condition on events of positive probability, or on
the σ-algebra generated by a random variable.

In Radon spaces (which include R
d and all complete separable metric spaces) these notions

are closely related: in particular, we can always compute a version of the conditional expec-
tation of one random-variable X given another Z as E[X | Z] = φX(z) for the limit

φX(z) = lim sup
ǫ→0

E
[

X | {|Z − z| < ǫ}
]
.

Let’s use this to try to answer the question: What is the conditional distribution of the

horizontal component X of a point drawn from the unit square, given that the point lies on

the bottom edge? Let (X, Y ) be the coordinates of a point drawn uniformly from the unit
square and 0 < ǫ < 1, and let ∆ denote the bottom edge of the square. For 0 < x < 1 we
can compute

P[X ≤ x | 0 ≤ Y ≤ ǫ] =
ǫx

ǫ
= x

and conclude (taking ǫ → 0) that the conditional distribution of X, given Y = 0, is the
standard uniform, and hence the conditional expectation E[X | Y = 0] = 1/2. Similarly if
we let R := Y/X be the ratio of Y to X, we can also compute

P[X ≤ x | 0 ≤ R ≤ ǫ] =
ǫx2/2

ǫ/2
= x2,

so the conditional distribution of X, given R = 0, is Be(2, 1), with conditional density
f(x | R=0) = 2x on [0, 1] and conditional mean E[X | R=0] = 2/3.
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Note that both of these “events” on which we condition are identical— the null event that
(X, Y ) lies on the bottom edge ∆ := {(x, 0) : 0 < x ≤ 1} of the square, another example of
Borel’s paradox. Really these two different results were answers to different questions: one
found the values of P[X ≤ x | σ{Y }] and E[X | σ{Y }], the other found P[X ≤ x | σ{R}]
and E[X | σ{R}]. Geometrically, what do events in σ{Y } and those in σ{R} look like in the
square? For an arbitrary density f(x) on the unit interval, can you find a random variable
Z (a function of X and Y ) such that {Z = 0} is the bottom edge of the square and the
conditional distribution of X given Z = 0 is f(x) dx? Are any conditions on f(x) needed?

A little more generally...

Let f(x) be any strictly-positive bounded pdf on the unit interval, and set Z := Y/f(X).
Then (X, Y ) ∈ ∆ := [0, 1] × {0} if and only if Z = 0 and, for ǫ > 0,

P[X ≤ x | Z ≤ ǫ] =
P[X ≤ x ∩ Y ≤ ǫf(X)]

P[Y ≤ ǫf(X)]

=

∫ x

0
min[1, ǫf(ξ)]dξ

∫ 1

0
min[1, ǫf(ξ)]dξ

=

∫ x

0
min[1/ǫ, f(ξ)]dξ

∫ 1

0
min[1/ǫ, f(ξ)]dξ

→

∫ x

0

f(ξ)dξ

as ǫ → 0 by LMCT, so the limiting distribution of X conditional on Z ≤ ǫ is the completely
arbitrary distribution with density f(x). Thus, in a very strong way, the “conditional distri-
bution of X given that (X, Y ) ∈ ∆” is not determined. We can find conditional probabilities
and distributions given random variables or non-null events or (more generally than either)
sigma algebras, but not given events of probability zero.

Be careful out there...

Borel’s paradox isn’t just an academic puzzle. Näıve attempts to “condition” on null events
(for example, by trying to impose Bayesian prior distributions on both the inputs and outputs
of deterministic models, as in Inference from a Deterministic Population Dynamics Model

for Bowhead Whales by Raftery, Givens & Zeh, JASA 1995) pop up every year or two in the
literature, and sometimes aren’t caught in the review process. That one (I kid you not) led
to discussions about Borel’s Paradox at meetings of the International Whaling Commission,
and in the 1995 IWC Annual Report (try googling “bowhead whale borel paradox”).

Be careful!

Last edited: November 9, 2018
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