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11 Martingale Methods: Definitions & Examples

Karlin & Taylor, A First Course in Stochastic Processes, pp. 238–253

Martingales

We’ve already encountered and used martingales in this course to help study the hitting-times
of Markov processes. Informally a martingale is simply a stochastic process Mt defined on some
probability space (Ω,F ,P) that is “conditionally constant,” i.e., whose predicted value at any
future time s > t is the same as its present value at the time t of prediction. Formally we represent
what is known at time t in the form of an increasing family of σ-algebras Ft ⊂ F , possibly those
generated by a process [Xs : s ≤ t] or even by the martingale itself, Ft = σ([Ms : s ≤ t]), and
require that E[|Mt|] < ∞ for each t (so the conditional expectation below is well-defined) and that

Mt = E[Ms | Ft]

for each t < s. For discrete-time processes (like functions of the Markov chains we looked at before)
it is only necessary to take s = t+ 1 (why?), and we usually take Ft = σ[Xi : i ≤ t] and write

Mt = E[Mt+1 | X0, ...,Xt].

Several “big theorems” about martingales make them useful for studying stochastic processes:

Optional Sampling Theorem:

If τ is a stopping time or Markov time, i.e., a random time that “doesn’t depend on the future”
(technically the requirement is that the event [τ ≤ t] should be in Ft for each t), and if Mt is a
martingale, and if both E[τ ] < ∞ and {Mt} is uniformly integrable, then

Mt = E[Mτ∨t | Ft]

and in particular x = E[Mτ | M0 = x]. More generally, if {τn} is an increasing sequence of stopping
times with E[τn] < ∞ or {Mt} uniformly integrable, then Yn = Mτn is a martingale.
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Maximal Inequalities:

If Mt is a martingale and if t ≤ ∞ then
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Martingale Path Regularity:

If Mt is a martingale and a < b denote by ν
(t)
[a,b] the number of “upcrossings” of the interval [a, b]

by Ms prior to time t, the number of times it passes from below a to above b; then
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and, in particular, martingale paths don’t oscillate infinitely often— thus they have left and right
limits at every point. This is also the key lemma to prove:

Martingale Convergence Theorems:

Let Mt be a martingale. Then:

For any martingale Mt, there exists an RV M−∞ such that

lim
t→−∞

Mt = M−∞ a.s (Backwards MCT)

If also sups<∞ E[M+
s ] < ∞, then there exists an RV M∞ such that

lim
t→∞

Mt = M∞ a.s (Forwards MCT)

If also {|Ms|
p} is uniformly integrable for some p ≥ 1, then M∞ ∈ Lp and

lim
t→∞

Mt = M∞ in Lp. (Lp)

Martingale Problem for Continuous-Time Markhov Chains:

Let Qt
jk be a (possibly time-dependent) Markov transition matrix on a state space S. Then an

S-valued process Xt is a Markov chain with transition matrix Qt
jk if and only if, for all functions

φ : S → R, the process
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Mφ(t) := φ(Xt)− φ(X0)−

∫ t

0

[

∑

i=Xs

j∈S

Qs
ij [φ(j) − φ(i)]

]

ds

is a martingale. Similar characterizations apply to discrete-time Markov chains and to continuous-
time Markov processes with non-discrete state space S. This is the most powerful and general way
known for constructing Markov processes.

Doob’s Martingale:

Let Y be any F-measurable L1 random variable and let Mt = E[Y | Ft] be the best prediction of
Y available at time t. Then Mt is a uniformly-integrable martingale.

To summarize, martingales are important because:

1. They have close connections with Markov processes;

2. Their expectations at stopping times are easy to compute;

3. They offer a tool for bounding the maxima and minima of processes;

4. They offer a tool for establishing path regularity of processes;

5. They offer a tool for establishing the a.s convergence of certain random sequences;

6. They are important for modeling economic and statistical time series which are, in some
sense, predictions.

Examples:

1. Partial sums: Sn = Σn
i=1Xi of independent centered RVs

2. Stochastic Integral: Let Xn be an IID Bernoulli sequence with probability p. At time n you
can bet any fraction Fn you like of your (previous) fortune Mn−1 at odds p : 1−p, so your
new fortune is Mn−1(1 − Fn(1 − Xn/p)). If Fn ∈ σ[X1 · · ·Xn−1], Mn is a martingale. Note
that

Mn = M0 +

n
∑

i=1

FiMi−1[Yn − Yn−1]

for the martingale Yn = (Sn − np)/p, where Sn :=
∑n

j=1Xj .

3. Variance of a Sum: Mn =
(
∑n

i=1 Yi

)2
− nσ2, where EYi = 0 and EYiYj = σ2δij

4. Radon-Nikodym Derivatives: Mn(ω) = E
[

f(ω) | σ{( i
2n ,

j
2n ]}

]

Submartingales: Xt ∈ Ft, E[X
+
t ] < ∞, Xt ≤ E[Xs | Ft].

Jensen’s inequality: if Xt a margingale, φ convex and E[φ(Xt)
+] < ∞, then φ(Xt) is a submartin-

gale.
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