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11 Martingale Methods: Definitions & Examples

Karlin & Taylor, A First Course in Stochastic Processes, pp. 238-253

Martingales

We've already encountered and used martingales in this course to help study the hitting-times
of Markov processes. Informally a martingale is simply a stochastic process M; defined on some
probability space (€2, F,P) that is “conditionally constant,” i.e., whose predicted value at any
future time s > t is the same as its present value at the time t of prediction. Formally we represent
what is known at time ¢ in the form of an increasing family of o-algebras F; C F, possibly those
generated by a process [Xs : s < t] or even by the martingale itself, 7, = o([M; : s < t]), and
require that E[|M;|] < oo for each ¢ (so the conditional expectation below is well-defined) and that

Mt = E[Ms ’ -Ft]

for each t < s. For discrete-time processes (like functions of the Markov chains we looked at before)
it is only necessary to take s =t + 1 (why?), and we usually take F; = o[X; : i < t] and write

M, = E[My41 | Xo,..., X4

Several “big theorems” about martingales make them useful for studying stochastic processes:

Optional Sampling Theorem:

If 7 is a stopping time or Markov time, i.e., a random time that “doesn’t depend on the future”
(technically the requirement is that the event [ < t] should be in F; for each t), and if M, is a
martingale, and if both E[7] < co and {M,} is uniformly integrable, then

My = E[Mzvi | ]

and in particular x = E[M, | My = z|. More generally, if {7,,} is an increasing sequence of stopping
times with E[7,,] < co or {M;} uniformly integrable, then Y,, = M, is a martingale.
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Maximal Inequalities:

If M, is a martingale and if ¢ < co then
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Martingale Path Regularity:
()

If M, is a martingale and a < b denote by l/[;t y the number of “upcrossings” of the interval [a, b]

by M prior to time ¢, the number of times it i)asses from below a to above b; then

) E[M,"] + |a]
Elvion] < =

and, in particular, martingale paths don’t oscillate infinitely often— thus they have left and right
limits at every point. This is also the key lemma to prove:

Martingale Convergence Theorems:

Let M; be a martingale. Then:

For any martingale M;, there exists an RV M_., such that

lim My = M_ a.s (Backwards MCT)
t——o0
If also sup, .., E[M;"] < oo, then there exists an RV My, such that
lim M; = My a.s (Forwards MCT)
t—r00

If also {|M,|P} is uniformly integrable for some p > 1, then M, € L, and
lim M; = My in Ly, (Lyp)

t—o00

Martingale Problem for Continuous-Time Markhov Chains:

Let Q?k be a (possibly time-dependent) Markov transition matrix on a state space S. Then an
S-valued process X; is a Markov chain with transition matrix sz if and only if, for all functions
¢: S — R, the process
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¢
My(t) = 6(X0) — o(X0) - [ [ 3 Q5 l0) - 609 ds
0 Ti=x,
JjES
is a martingale. Similar characterizations apply to discrete-time Markov chains and to continuous-
time Markov processes with non-discrete state space §. This is the most powerful and general way

known for constructing Markov processes.

Doob’s Martingale:

Let Y be any F-measurable L; random variable and let M; = E[Y | F;] be the best prediction of
Y available at time t. Then M, is a uniformly-integrable martingale.

To summarize, martingales are important because:

1. They have close connections with Markov processes;

2. Their expectations at stopping times are easy to compute;

3. They offer a tool for bounding the maxima and minima of processes;

4. They offer a tool for establishing path regularity of processes;

5. They offer a tool for establishing the a.s convergence of certain random sequences;

6. They are important for modeling economic and statistical time series which are, in some
sense, predictions.

Examples:

1. Partial sums: S,, = X7 ; X; of independent centered RVs

2. Stochastic Integral: Let X, be an IID Bernoulli sequence with probability p. At time n you
can bet any fraction F), you like of your (previous) fortune M,,_; at odds p : 1—p, so your
new fortune is M,,_1(1 — F,(1 — X,,/p)). If F,, € o[X;--- X,,—1], M,, is a martingale. Note
that

n
My = Mo+ FM; 1[Yn — Yy 4]
i=1

for the martingale Y;, = (S,, — np)/p, where S,, := Z;‘L:1 X;.
3. Variance of a Sum: M, = (Z?Zl Yi)2 — no?, where EY; = 0 and EY;Y; = 025,~j

4. Radon-Nikodym Derivatives: M, (w) = E[f(w) | o{(5, 2]—,1]}]

Submartingales: X; € F, E[X;"] < 0o, X; < E[Xs | F).
Jensen’s inequality: if X; a margingale, ¢ convex and E[¢(X})T]| < oo, then ¢(X;) is a submartin-
gale.
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