STA 711: Probability & Measure Theory Robert L. Wolpert

11 Martingale Methods: Definitions & Examples

Karlin & Taylor, A First Course in Stochastic Processes, pp. 238–253

Martingales

We've already encountered and used martingales in this course to help study the hitting-times of Markov processes. Informally a martingale is simply a stochastic process M_t defined on some probability space $(\Omega, \mathcal{F}, \mathsf{P})$ that is "conditionally constant," *i.e.*, whose predicted value at any future time s > t is the same as its present value at the time t of prediction. Formally we represent what is known at time t in the form of an increasing family of σ -algebras $\mathcal{F}_t \subset \mathcal{F}$, possibly those generated by a process $[X_s: s \leq t]$ or even by the martingale itself, $\mathcal{F}_t = \sigma([M_s: s \leq t])$, and require that $\mathsf{E}[|M_t|] < \infty$ for each t (so the conditional expectation below is well-defined) and that

$$M_t = \mathsf{E}[M_s \mid \mathcal{F}_t]$$

for each t < s. For discrete-time processes (like functions of the Markov chains we looked at before) it is only necessary to take s = t + 1 (why?), and we usually take $\mathcal{F}_t = \sigma[X_i : i \le t]$ and write

$$M_t = \mathsf{E}[M_{t+1} \mid X_0, ..., X_t].$$

Several "big theorems" about martingales make them useful for studying stochastic processes:

Optional Sampling Theorem:

If τ is a stopping time or Markov time, i.e., a random time that "doesn't depend on the future" (technically the requirement is that the event $[\tau \leq t]$ should be in \mathcal{F}_t for each t), and if M_t is a martingale, and if both $\mathsf{E}[\tau] < \infty$ and $\{M_t\}$ is uniformly integrable, then

$$M_t = \mathsf{E}[M_{\tau \lor t} \mid \mathcal{F}_t]$$

and in particular $x = \mathsf{E}[M_\tau \mid M_0 = x]$. More generally, if $\{\tau_n\}$ is an increasing sequence of stopping times with $\mathsf{E}[\tau_n] < \infty$ or $\{M_t\}$ uniformly integrable, then $Y_n = M_{\tau_n}$ is a martingale.

Maximal Inequalities:

If M_t is a martingale and if $t \leq \infty$ then

$$\begin{split} & \mathsf{P}\Big[\sup_{s \leq t} M_s \geq \lambda\Big] \leq \frac{1}{\lambda} \mathsf{E}\big[M_t^+\big] \\ & \mathsf{P}\Big[\min_{s \leq t} M_s \leq -\lambda\Big] \leq \frac{1}{\lambda} \big(\mathsf{E}\big[M_t^+\big] - \mathsf{E}\big[M_0\big]\big) \\ & \mathsf{E}\Big[\sup_{s \leq t} |M_s|^p\Big] \leq \left(\frac{p}{p-1}\right)^p \sup_{s \leq t} \mathsf{E}\big[|M_s|^p\big] \qquad (p > 1) \\ & \mathsf{E}\Big[\sup_{s \leq t} |M_s|\Big] \leq \frac{e}{e-1} \sup_{s \leq t} \mathsf{E}\big[|M_s| \log^+(|M_s|)\big](p = 1) \end{split}$$

Martingale Path Regularity:

If M_t is a martingale and a < b denote by $\nu_{[a,b]}^{(t)}$ the number of "upcrossings" of the interval [a,b] by M_s prior to time t, the number of times it passes from below a to above b; then

$$\mathsf{E}\Big[\nu_{[a,b]}^{(t)}\Big] \le \frac{\mathsf{E}[M_t^+] + |a|}{b - a}$$

and, in particular, martingale paths don't oscillate infinitely often—thus they have left and right limits at every point. This is also the key lemma to prove:

Martingale Convergence Theorems:

Let M_t be a martingale. Then:

For any martingale M_t , there exists an RV $M_{-\infty}$ such that

$$\lim_{t \to -\infty} M_t = M_{-\infty} \ a.s \tag{Backwards MCT}$$

If also $\sup_{s<\infty} \mathsf{E}[M_s^+] < \infty$, then there exists an RV M_∞ such that

$$\lim_{t \to \infty} M_t = M_{\infty} \ a.s \tag{Forwards MCT}$$

If also $\{|M_s|^p\}$ is uniformly integrable for some $p\geq 1$, then $M_\infty\in L_p$ and

$$\lim_{t \to \infty} M_t = M_{\infty} \text{ in } L_p. \tag{L_p}$$

Martingale Problem for Continuous-Time Markhov Chains:

Let Q_{jk}^t be a (possibly time-dependent) Markov transition matrix on a state space S. Then an S-valued process X_t is a Markov chain with transition matrix Q_{jk}^t if and only if, for all functions $\phi: S \to \mathbb{R}$, the process

$$M_{\phi}(t) := \phi(X_t) - \phi(X_0) - \int_0^t \left[\sum_{\substack{i=X_s \ i \in S}} Q_{ij}^s \left[\phi(j) - \phi(i) \right] \right] ds$$

is a martingale. Similar characterizations apply to discrete-time Markov chains and to continuous-time Markov processes with non-discrete state space S. This is the most powerful and general way known for *constructing* Markov processes.

Doob's Martingale:

Let Y be any \mathcal{F} -measurable L_1 random variable and let $M_t = \mathsf{E}[Y \mid \mathcal{F}_t]$ be the best prediction of Y available at time t. Then M_t is a uniformly-integrable martingale.

To summarize, martingales are important because:

- 1. They have close connections with Markov processes;
- 2. Their expectations at stopping times are easy to compute;
- 3. They offer a tool for bounding the maxima and minima of processes;
- 4. They offer a tool for establishing path regularity of processes;
- 5. They offer a tool for establishing the a.s convergence of certain random sequences;
- 6. They are important for modeling economic and statistical time series which are, in some sense, predictions.

Examples:

- 1. Partial sums: $S_n = \sum_{i=1}^n X_i$ of independent centered RVs
- 2. Stochastic Integral: Let X_n be an IID Bernoulli sequence with probability p. At time n you can bet any fraction F_n you like of your (previous) fortune M_{n-1} at odds p: 1-p, so your new fortune is $M_{n-1}(1 F_n(1 X_n/p))$. If $F_n \in \sigma[X_1 \cdots X_{n-1}]$, M_n is a martingale. Note that

$$M_n = M_0 + \sum_{i=1}^n F_i M_{i-1} [Y_n - Y_{n-1}]$$

for the martingale $Y_n = (S_n - np)/p$, where $S_n := \sum_{j=1}^n X_j$.

- 3. Variance of a Sum: $M_n = \left(\sum_{i=1}^n Y_i\right)^2 n\sigma^2$, where $\mathsf{E}Y_i = 0$ and $\mathsf{E}Y_iY_j = \sigma^2\delta_{ij}$
- 4. Radon-Nikodym Derivatives: $M_n(\omega) = \mathsf{E}\big[f(\omega) \mid \sigma\{(\frac{i}{2^n}, \frac{j}{2^n}]\}\big]$

Submartingales: $X_t \in \mathcal{F}_t$, $\mathsf{E}[X_t^+] < \infty$, $X_t \le \mathsf{E}[X_s \mid \mathcal{F}_t]$. Jensen's inequality: if X_t a margingale, ϕ convex and $\mathsf{E}[\phi(X_t)^+] < \infty$, then $\phi(X_t)$ is a submartingale.