Final Examination

STA 711: Probability & Measure Theory

Saturday, 2019 Dec 14, 2:00 - 5:00 pm

This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, maxima, unreduced fractions. Wherever, possible **simplify**.

Good luck.

1.	/20	5.	/20
2.	/20	6.	/20
3.	/20	7.	/20
4.	/20	8.	/20
	/80		/80
Total:		-	/160

Print Name:

Problem 1: A few questions about $L_p(\Omega, \mathcal{F}, \mathsf{P})$ and convergence:

a) (5) Suppose that the sequence $\{X_n\}$ converges both *a.s.* and in L_2 —say, $X_n \to Y_1$ (*a.s.*), and $X_n \to Y_2$ in L_2 . Prove $\mathsf{P}[Y_1 = Y_2] = 1$.

b) (5) Suppose X_1, X_2, X_3 are all RVs on $(\Omega, \mathcal{F}, \mathsf{P})$ with

 $||X_1||_1 = 1$ $||X_2||_2 = 2$ $||X_3||_3 = 3$

Set $S := X_1 + X_2 + X_3$. For what p > 0 is $S \in L_p$? Give and justify a bound for $||S||_p$: $||S||_p \leq$

Problem 1 (cont'd): More about $L_p(\Omega, \mathcal{F}, \mathsf{P})$

c) (5) Fix p > 1. Let $A \in \mathcal{F}$ be an event with probability $a := \mathsf{P}[A]$ and let $X \in L_p(\Omega, \mathcal{F}, \mathsf{P})$ be a positive RV with norm $x := ||X||_p$. Find and justify a non-trivial upper bound (one that tends to zero as $a \to 0$ or $x \to 0$): $\mathsf{E}[|X\mathbf{1}_A|] \leq$

d) (5) Let $\{X, Y\} \subset L_1$ be independent and non-negative, but *not* in L_2 . Prove that $XY \in L_1$. Suggestion: For t > 0, consider $(X \wedge t)(Y \wedge t)$, where $x \wedge y := \min(x, y)$ for $x, y \in \mathbb{R}$. Then what? **Problem 2**: Let $\Omega = \mathbb{R}$ and $\mathcal{F} = \mathcal{B}(\Omega)$, the Borel sets on \mathbb{R} . Define two probability measures on (Ω, \mathcal{F}) by

$$\mathsf{P}(d\omega) := \frac{1}{2} e^{-|\omega|} d\omega \qquad \qquad \mathsf{Q}(d\omega) := \mathbf{1}_{\{\omega > 0\}} e^{-\omega} d\omega.$$

Set $\mathcal{B} := \{(-a, a) : a \in \mathbb{R}_+\}$ and $\mathcal{G} := \sigma(\mathcal{B})$.

a) (5) Prove that P and Q agree on all of \mathcal{G} .

b) (5) Prove that P and Q do *not* agree on all of \mathcal{F} .

Problem 2 (cont'd): Still $\mathsf{P}(d\omega) := \frac{1}{2}e^{-|\omega|}d\omega$ and $\mathsf{Q}(d\omega) := \mathbf{1}_{\{\omega>0\}}e^{-\omega}d\omega$, with $\mathcal{B} := \{(-a, a) : a \in \mathbb{R}_+\}$ and $\mathcal{G} := \sigma(\mathcal{B})$.

c) (5) Give an example of a non-constant \mathcal{G} -measurable RV X. X(ω) =

d) (5) Let $\{X_n\}$ be iid RVs with distribution P. Find a non-trivial DF G such that the maximum $X_n^* := \max\{X_j : 1 \le j \le n\}$ satisfies

$$(\forall x \in \mathbb{R}) \qquad \mathsf{P}\bigg[(X_n^* - \log n) \le x\bigg] \to G(x)$$

Problem 3: Let $\{A_n\} \subset \mathcal{F}$ and $\{X_n\} \subset L_1(\Omega, \mathcal{F}, \mathsf{P})$ with $||X_n||_1 \leq 1$ and $\mathsf{P}(A_n) \to 0$.

a) (8) Does it follow that $\mathsf{E}X_n\mathbf{1}_{A_n} \to 0$? \bigcirc Yes \bigcirc No. Prove it, or give a counter-example:

b) (8) Does it follow that $\mathsf{E}X_1\mathbf{1}_{A_n} \to 0$? \bigcirc Yes \bigcirc No. Prove it, or give a counter-example:

c) (4) Would either of your answers to a) or b) change if we have $\{X_n\} \subset L_4(\Omega, \mathcal{F}, \mathsf{P})$ with $\|X_n\|_4 \leq 42$? Explain.

Problem 4: Let $\{A_n\}$ be independent events on some probability space $(\Omega, \mathcal{F}, \mathsf{P})$ with $\mathsf{P}(A_n) = 2^{-2n} = 4^{-n}$ and for $n \ge 0$ set

$$X_n := 2^n \mathbf{1}_{A_n} \qquad \qquad Y := \sum_{n=0}^{\infty} X_n \qquad \qquad Z_n := \prod_{0 \le j < n} X_j$$

- a) (4) Show that Y is finite almost-surely:
- b) (4) For which $0 and <math>n \in \mathbb{N}$ is $X_n \in L_p$? Why?
- c) (4) For which $0 is <math>Y \in L_p$? Why?

d) (4) Is the sequence $\{Z_n^p\}$ a Martingale for some p > 0? \bigcirc Yes \bigcirc No Why?

e) (4) In what sense(s) does Z_n converge, and to what limit? $\bigcirc a.s. \bigcirc pr. \bigcirc L_1 \bigcirc L_2 \bigcirc L_\infty$ Limit:

Problem 5: Let $X \sim \mathsf{Po}(\lambda)$ and $Y \sim \mathsf{Ex}(\theta)$ be independent.

a) (4) Is the distribution $\mu(dz)$ of $Z := X \wedge Y$: \bigcirc Absolutely Continuous, \bigcirc Discrete, or \bigcirc Neither?¹ For each $z \in \mathbb{R}$, find: $\mathsf{P}[Z = z] = \mu(\{z\}) =$

b) (4) Is the distribution $\nu(ds)$ of S := X + Y: \bigcirc Absolutely Continuous, \bigcirc Discrete, or \bigcirc Neither? For each $s \in \mathbb{R}$, find: $\mathsf{P}[S = s] = \nu(\{s\}) =$

c) (4) For fixed $\theta > 0$, find $\lambda \in \mathbb{R}_+$ to achieve $\mathsf{P}[X < Y] = \frac{1}{2}$: $\lambda =$

¹Recall $x \wedge y := \min(x, \overline{y})$ for $x, y \in \mathbb{R}$

Problem 5 (cont'd): Still $X \sim \mathsf{Po}(\lambda), Y \sim \mathsf{Ex}(\theta)$, and $X \perp Y$.

d) (4) Find the MGF $M(t) := \mathsf{E}[\exp(tS)]$ for the sum S := X + Y. For which $t \in \mathbb{R}$ is $M(t) < \infty$ finite? M(t) =

e) (4) Find the ch.f. $\chi(\omega) := \mathsf{E}\big[\exp(i\omega S)\big]$ for the sum S := X + Y. For which $\omega \in \mathbb{R}$ is $|\chi(\omega)| < \infty$ finite? $\chi(\omega) =$

Problem 6: The random variables X and Z are independent, with distributions

$$X \sim No(0,1)$$
 $P[Z = +1] = 1/2 = P[Z = -1]$

and product Y := XZ. Simplify all answers.

a) (6) What is the probability distribution of Y?

b) (4) What is the covariance of X and Y?

c) (5) Are X and Y independent? \bigcirc Yes \bigcirc No Why?

d) (5) Are Y and Z independent? \bigcirc Yes \bigcirc No Why?

Problem 7: Let $X \sim \mathsf{Ex}(a)$, $Y \sim \mathsf{Ex}(b)$, and $Z \sim \mathsf{Ex}(c)$ be independent RVs on $(\Omega, \mathcal{F}, \mathsf{P})$ (see *p*.13 for the pdf, mean, *etc.* of $\mathsf{Ex}(\lambda)$). Find (and simplify):

a) (5) $\mathsf{P}[Y < Z] = \int_0^\infty \int_y^\infty b \, c \, e^{-by-cz} \, dz \, dy =$

b) (5)
$$\mathsf{P}[X < Y < Z] =$$

c) (5)
$$\mathsf{P}[X < Y \mid Y < Z] =$$

d) (5)
$$\mathsf{E}[XY/Z] =$$

Problem 8: True or false? Circle one, for 2 points each. No explanations are needed. All random variables are real on the same space $(\Omega, \mathcal{F}, \mathsf{P})$.

a) **T F** For any real number $x \in \mathbb{R}, x \leq e^x - 1$.

b) T F If events A, B, C are independent then $(A \cup B)$ and C are independent too.

c) T F If events A, B, C are independent then $(A \cap B)$ and C are independent too.

d) T F If $\{X_i\}$ are iid and $\mathsf{P}[X_i \in (0,1)] = 1$ then $\prod_{j=1}^n X_j \to 0$ a.s.

e) $\mathsf{T}\mathsf{F}$ If the distribution $\mu(B) := \mathsf{P}[X \in B]$ of X is neither absolutelycontinuous nor discrete, then it must be singular continuous.

f) T F If $E|Z| = \infty$ then $E[Z \mid G]$ is not defined.

- g) T F If $X \sim \mathsf{Ex}(\lambda)$ then, for x > 0, $\mathsf{P}[X = x] = \lambda e^{-\lambda x}$.
- h) TF If $\mathsf{E}[e^{i\omega X}] = \cos(\omega)$ then $X \sim \mathsf{Un}((-\pi,\pi])$.
- i) T F If $\sigma(X) = \sigma(Y)$ then $X = \phi(Y)$ for some Borel function ϕ .

j) T F If $\{M_n\}$ is a martingale then $\xi_n := (M_n - M_{n-1})$ are independent L_1 RVs with mean zero.

Fall 2019 11 Sat Dec 14:
$$2 \rightarrow 5 \text{ pm}$$

Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	n p	npq	(q = 1 - p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	$lpha/\lambda^2$	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q = 1 - p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
HyperGeo.	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
Logistic	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2} \left(e^{\sigma^2} - 1 \right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	lpha q/p	$\alpha q/p^2$	(q = 1 - p)
		$f(y) = {\binom{y-1}{y-\alpha}} p^{\alpha} q^{y-\alpha}$	$y\in\{\alpha,\ldots\}$	lpha/p	$lpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$	$x \in \mathbb{R}_+$	$\frac{\epsilon}{\alpha-1}$ if $\alpha > 1$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$ if $\alpha>2$	
		$f(y) = \alpha \epsilon^{\alpha} / y^{\alpha + 1}$	$y\in (\epsilon,\infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$ if $\alpha > 1$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$ if $\alpha > 2$	$(y = x + \epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
Snedecor F	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times $	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2 - 2}$ if $\nu_2 > 2$	$\left(\frac{\nu_2}{\nu_2-2}\right)^2 \frac{2(\nu_1+\nu_2)}{\nu_1(\nu_2)}$	$\frac{(\nu_2 - 2)}{-4)}$ if $\nu_2 > 4$
		$x^{\frac{\nu_1-2}{2}} \left[1+\frac{\nu_1}{\nu_2}x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0 if $\nu > 1$	$\frac{\nu}{\nu-2}$ if $\nu > 2$	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	$We(\alpha,\beta)$	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha) - \Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	