Sta 711: Homework 1

Fields and σ-fields

1. Enumerate the class \mathcal{K} of all σ-fields \mathcal{F} on the three-point set $\Omega = \{a, b, c\}$ that contain the singleton $\{a\}$, i.e., that satisfy $C \subset \mathcal{F}$ for $C := \{\{a\}\}$. What is $\sigma(C)$?

2. Prove that for any two fields \mathcal{F}_1 and \mathcal{F}_2 on any set Ω, the intersection $\mathcal{F}_1 \cap \mathcal{F}_2$ is also a field.

3. Find a set Ω and two fields \mathcal{F}_1 and \mathcal{F}_2 on Ω for which $\mathcal{F}_1 \cup \mathcal{F}_2$ is not a field.

4. Suppose a collection $\{\mathcal{F}_n : n \in \mathbb{N}\}$ of σ-fields on a set Ω satisfies the relation $\mathcal{F}_j \subset \mathcal{F}_{j+1}$ for every $j \in \mathbb{N}$. Does it follow that $\bigcup \mathcal{F}_j$ is a field? (the answer is “yes” — show why)

5. Under the same conditions, must $\bigcup \mathcal{F}_j$ be a σ-field? (this one is “no” — find a counterexample. The idea is to find a sequence $A_n \in \mathcal{F}_n$ with $\bigcup A_n \notin \mathcal{F}_j$ for every j, hence $\bigcup A_n \notin \bigcup \mathcal{F}_j$).
Dyadic Rational Probability Spaces

For problems 6–9, let \(\Omega = \mathbb{Q}_2 := \{j/2^n : j \in \{1, 2, \cdots , 2^n \}, n \in \mathbb{N} \} \) be the dyadic rational numbers in the half-open unit interval, and let

\[
C = \{(0, b] \cap \mathbb{Q}_2 : b \in \mathbb{Q}_2, \ 0 < b \leq 1 \}
\]

(1)
denote the collection of half-open intervals of dyadic rationals \((0, b] = \{q \in \mathbb{Q}_2 : 0 < q \leq b \} \) with left endpoint zero. Every \(\Omega \) on this page contains only dyadic rational numbers.

Recall that a real-valued set function \(P \) on a \(\sigma \)-algebra \(G \) of subsets of a space \(\Omega \) is a “probability measure” (PM) if and only if it satisfies the three rules:

- (\(\forall A \in G \)) \(P(A) \geq 0 \);
- (\(\forall \{A_i\} \subset G, \ A_i \cap A_j = \emptyset \) \(P(\bigcup A_i) = \sum P(A_i) \);
- \(P(\Omega) = 1 \).

6. Let \(n \in \mathbb{N} \) be a FIXED positive integer (like three) and set

\[
B_n := \{(0, j/2^n], j \in \{0, 1, \cdots , 2^n \}\},
\]

the collection of half-open intervals in \(\Omega \) of dyadic rationals from zero up to an integral multiple of \(2^{-n} \). Describe the elements of the \(\sigma \)-field

\[
F_n := \sigma(B_n)
\]
generated by \(B_n \), for fixed \(n \in \mathbb{N} \). How many elements does \(B_n \) have? How many distinct elements does \(F_n \) have? What are they? Suggestion: Try \(B_0, B_1 \) and \(B_2 \) first, by hand. Is there a partition that generates \(F_n \)?

7. What is the field \(F_0 := \mathcal{F}(C) \) of subsets of \(\mathbb{Q}_2 \) generated by the class \(C \) of Eqn (1)? (hint: Do problems (4) and (6) first). Try to describe it in just a few words, without using any symbols besides \(\mathbb{Q}_2 \). Don’t just echo the definition!

8. Describe simply and clearly in no more than five words or symbols (seriously, three should be enough) the \(\sigma \)-field \(\mathcal{F} := \sigma(C) \) of subsets of \(\mathbb{Q}_2 \) generated by \(C \). Don’t just echo the definition!

9. Define a set function \(\lambda_0 \) on \(C \) by

\[
\lambda_0\left((0, b] \right) = b
\]

Show that there does not exist a probability measure \(\lambda \) on \((\mathbb{Q}_2, \mathcal{F}) \) that extends \(\lambda_0 \), i.e., one for which \(\lambda((0, b]) = b \) for all \(b \in \mathbb{Q}_2 \) (Hint: Exactly what does the function \(F(x) := \lambda\left((0, x] \right), 0 \leq x \leq 1 \) look like near \(x \in \mathbb{Q}_2 \), for any PM \(\lambda \) on \(\mathbb{Q}_2 \)?)

Last edited: September 16, 2019