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Informally a martingale is simply a family of random variables (or a stochastic process)
{Mt} defined on some probability space (Ω,F ,P) and indexed by some ordered set T that
is “conditionally constant,” i.e., whose predicted value at any future time s > t, based on
everything known at time t, is the same as its present value at the time t of prediction.
The set T of possible indices t ∈ T is usually taken to be the nonnegative integers N0 or
the nonnegative reals R+, although sometimes Z or R or other ordered sets arise. Formally
we represent what is known at time t in the form of an increasing family of σ-algebras (or
a filtration) {Ft} ⊂ F , possibly generated by some process {Xs : s ≤ t} or even by the
martingale itself, FM

t = σ{Ms : s ≤ t} (this one is called the natural filtration). We require
that E|Mt| < ∞ for each t (so the conditional expectation below is well-defined) and that

Mt = E[Ms | Ft], t < s. (1)

It follows that {Mt} is adapted to {Ft}, i.e., Mt is Ft-measurable for each t. For integer-
time processes, like functions of random walks or Markov chains, it is only necessary (by the
tower property) to insist that (1) hold for s = t + 1, and it will follow that it holds for all
s > t. Usually we take Ft = σ[Xi : i ≤ t] for some process of interest Xt (perhaps Mt itself,
although in general Ft can be bigger than that) and write

Mt = E[Mt+1 | X0, ..., Xt].

There are several “big theorems” about martingales that make them useful in statistics and
probability theory. Most of them are simple to prove for discrete time T = N0, and true but
more challenging for continuous time T = R+, so our text (Resnick, 1998, chap. 10) covers
only integer-time martingales.

1 Optional Stopping Theorem

A random “time” τ : Ω → T is an Ft-stopping time or a Markov time if for each t ∈ T the
event [τ ≤ t] is in Ft; informally, τ “doesn’t depend on the future.” For discrete time sets
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T , τ is a stopping time if and only if the event [τ = t] ∈ Ft for each t ∈ T (can you prove
that?).

If τ is a stopping time and if Mt is a martingale, then Mt∧τ is a martingale too. The proof
is easy for integer-time martingales:

E[M(t+1)∧τ | Ft] = E[Mτ1[τ≤t] + Mt+11[τ>t] | Ft]

= Mτ1[τ≤t] + 1[τ>t]E[Mt+1 | Ft]

= Mτ1[τ≤t] + 1[τ>t]Mt

= Mt∧τ .

1.1 Application: Simple Random Walks

Fix 0 < p < 1 and let {ξj} be iid ±1-valued random variables with P[ξj = 1] = p and
P[ξj = −1] = q := (1 − p) (hence Eξj = p− q and Vξj = 4pq). Set Fn := σ {ξj : j ≤ n}, let
x ∈ Z, and set:

Xn := x +
∑

j≤n

ξj, (2)

a random walk starting at X0 = x that is either symmetric (if p = 1
2
) or not (if p 6= 1

2
). Set

µ := (p−q) and consider for n ∈ N0 = {0, 1, . . . } the three processes

M (1)
n = Xn − µn (3a)

M (2)
n = (Xn − µn)2 − 4pq n (3b)

M (3)
n = (q/p)Xn (3c)

Verify that each of these is a martingale by computing E[M
(i)
n+1 | Fn] = M

(i)
n and ap-

plying the tower property and induction. For integers a ≤ x and b ≥ x, verify that
τ := inf

{

t ≥ 0 : Xt /∈ (a, b)
}

is a stopping time, finite a.s. by Borel-Cantelli.

Gambler’s Ruin

Starting with a fortune of $x and repeatedly betting $1 at even odds at a game where the
probabilities of winning and losing are p and q := (1−p), what is the probability of “winning”
by reaching a specified goal b > x before “losing” by falling to a specified limit a < x?

Let W := [τ < ∞] ∩ [Xτ = b] be the event that Xt exits (a, b) to the right, i.e., that
Xt ≥ b before Xt ≤ a. If p = 1

2
= q (the symmetric case) then µ = 0 and by DCT (since

|M (1)
t∧τ | ≤ |a| ∨ |b| < ∞),

x = E[M
(1)
0 ] = lim

t→∞
E[M

(1)
t∧τ ]

= E[M (1)
τ ] = bP[W ] + aP[W c]

= (b− a)P[W ] + a,
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so the probability of winning is

P[W ] =
x− a

b− a
. (4)

Thus in a “fair” game the odds of reaching b before falling to a, starting at x ∈ [a, b], increases
linearly from zero at a to one at b. For an un-fair game, i.e., if p 6= q, then (p/q)b 6= (p/q)a

and again by DCT,

(q/p)x = E[M
(3)
0 ] = lim

t→∞
E[M

(3)
t∧τ ] = E[M (3)

τ ]

= (q/p)bP[W ] + (q/p)aP[W c]

=
[

(q/p)b − (q/p)a
]

P[W ] + (q/p)a, so

P[W ] =
(q/p)x − (q/p)a

(q/p)b − (q/p)a

=
(p/q)b−x − (p/q)b−a

1 − (p/q)b−a
(5)

≈ (p/q)b−x if b ≫ a and p < 1
2
< q.

For example, for 1:1 bets in US roulette which win with probability p = 9/19 and lose with
probability q = 10/19, the chance of winning by reaching b = $100 before falling to a = $0
with one-dollar bets beginning at x = $90 is P[W ] = (0.910 − 0.9100)/(1 − 0.9100) = 0.34866,
and the chance of reaching $100 before $0 starting at x = $50 is P[W ] = (0.950−0.9100)/(1−
0.9100) = 0.00513, while these would be 90% and 50% in a fair game. It’s surprising to most
of us what a dramatic difference the seemingly small departure of p ≈ 0.474 and q ≈ 0.526
from 0.500 makes, caused by the inclusion of green “0” and “00” outcomes (along with 18
red outcomes and 18 black ones).

Martingale M
(2)
t can help us find the expected duration of a fair game. For p = 1

2
= q, µ = 0

and 4pq = 1, so

x2 = M
(2)
0 = lim

t→∞
E[M

(2)
t∧τ ] = E[M (2)

τ ]

= E[Xτ
2 − τ ]

= b2
P[W ] + a2

P[W c] − E[τ ]

=
b2(x− a) + a2(b− x)

b− a
− E[τ ]

= (a + b)x− ab− E[τ ] so

E[τ ] = (a + b)x− ab− x2 = (b− x)(x− a). (6)

The expected time until Xt = 100 or Xt = 0 starting at x = 90 is 900 turns and starting
at x = 50 is 2500 turns, or 30 and 83 hours respectively at a typical rate of two turns per

Page 3Page 3Page 3



STA 711 Martingales R L WolpertSTA 711 Martingales R L WolpertSTA 711 Martingales R L Wolpert

minute. For unfair games we can find Eτ from M
(1)
τ :

x = M
(1)
0 = lim

t→∞
E[M

(1)
t∧τ ] = E[M (1)

τ ]

= E[Xτ − µτ ]

=
b[(q/p)x − (q/p)a] + a[(q/p)b − (q/p)x]

(q/p)b − (q/p)a
− µE[τ ], so

Eτ =
(b− x)[(q/p)x − (q/p)a] + (a− x)[(q/p)b − (q/p)x]

µ[(q/p)b − (q/p)a]

=
(b− x)[(p/q)b−x − (p/q)b−a] − (x− a)[1 − (p/q)b−x]

(p− q)[1 − (p/q)b−a]
(7)

or approximately Eτ ≈ (x − a)/(q − p) for a ≪ b and p < q. For US roulette, Eτ = 1047.5
for x = 90 (with a slim 35% chance of winning) and Eτ = 940.258 for x = 50 (with about a
1/200 chance). Larger bets make the game go quicker and improve the chance of winning;
for $10 bets, set a = 0, b = 10 and try x = 5, x = 9 to see the probability of winning increase
to P[W ] = 37% or 87% with E[τ ] = 24.46 or 10.17, respectively, much closer to the values
50%, 90% for P[W ] and 25, 10 for Eτ in a fair game. Even faster (and more favorable) is
the optimal strategy of bold play, betting x ∧ (b− x) each time; for x = 50 this amounts to
betting all $50 at once (E[W ] = 9/19 = 47.37%, Eτ = 1) while for x = $90, E[W ] = 87.94%.

Upon taking the limit as a → −∞ in Eqns (4, 5) we find that P[Xt ≥ b for any t < ∞]
has probability one if p ≥ 1

2
, but for p < 1

2
the probability is (p/q)b−x < 1; thus even an

infinitely-rich patron has only a 0.910 = 34.8678% chance of winning $10 in US roulette with
successive $1 bets. The expected time to reach b > x is infinite for p ≤ 1

2
, but for p > 1

2
the

expected time is finite, E[τ ] = (b− x)/(p− q) < ∞.

1.1.1 Other Random Walks

More generally we can construct a process Xn as in (2) for any iid {ξj} ⊂ L2 with finite MGF

and martingales M
(k)
n as in (3), with µ = Eξj in (3a), replacing 4pq with σ2 = Vξj in (3b),

and replacing (q/p) with et
∗

where t∗ 6= 0 is the solution to M(t∗) = 1 for the MGF M(t) of
ξj (t∗ < 0 if µ > 0, t∗ > 0 if µ < 0). Now the probabilities of Eqns (4, 5) and expectations of
Eqns (6, 7) will only be approximate, since Xτ won’t be exactly a or b. Abraham Wald (1945)
studied the discrepancy in some detail, motivated by the following important application,
the key to modern sequential clinical trials.

1.2 The SPRT Sequential Statistical Test

If iid random variables {Yj} are known to come from one of two possible distributions, with
densities (w.r.t. any σ-finite reference measure) f0 and f1, the likelihood ratio (against the
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Null) for the first n observations is

Λn :=
n
∏

j=1

f1(Yj)

f0(Yj)
.

In Wald’s Sequential Probability Ratio Test (SPRT), one observes data sequentially until

Λn passes an upper boundary U ∈ (1,∞) (in which case the null hypothesis H0 : Yj
iid∼

f0(y) dy is rejected) or a lower boundary L ∈ (0, 1) (in which case the test fails to re-
ject H0). The test has optimality properties (Wald and Wolfowitz, 1948) similar to those
of fixed-sample-size likelihood ratio tests (Neyman and Pearson, 1933). The logarithm
Xn = log Λn is a random walk under both f0 and f1, and τ := inf {n : Λn /∈ (L, U)} =
inf {n : Xn /∈ (a := logL, b := logU)} is Wald’s stopping time, so the results of Section (1.1.1)
apply. In addition, Λn itself is a martingale under f0, as is Λ−1 under f1, giving con-
venient tools for bounding the probability of incorrect hypothesis-test results or the ex-
pected duration of a sequential test. The approximate size α = P0[Λτ ≥ U ] and power
[1 − β] = P1[Λτ ≥ U ] are:

α ≈ (1 − L)/(U − L) 1 − β ≈ U(1 − L)/(U − L)

so any desired size and power can be obtained by setting

L ≈ β/(1 − α) U ≈ (1 − β)/α

The approximate expected sample sizes S0 (under f0) and S1 (under f1) can be found by
applying martingale methods to the random walk Xn := log Λn, whose iid steps have means
µi (so (Xn − nµi) is a martingale) given by

µ0 = −K(f0 : f1) µ1 = K(f1 : f0),

S0 ≈ α logU + (1 − α) logL

µ0
S1 ≈ (1 − β) logU + β logL

µ1

under distribution {Yj} iid∼ fi for i = 0, 1 respectively. Here

K(f : g) :=

∫

log
f(y)

g(y)
f(y) dy ≥ 0

denotes the Kullback-Leibler divergence from f to g, a measure of the discrepancy between
two distributions with pdfs f , g. If f0 and f1 are rather similar, then µ0 and µ1 will be small
and the sample sizes S0 or S1 needed to attain small size α and large power (1 − β) will be
large.

A Bayesian with prior P[H0] = π0 would report posterior probability P[H0 | Data ] =
(1+ π1

π0
Λτ )

−1, or about π0/(π0 +π1a) if Xτ ≤ a and π0/(π0 +π1b) if Xτ ≥ b, lending guidance
about the selection of a and b. By Doob’s maximal inequality, for 0 < α, β < 1 the SPRT
with L = β and U = 1/α will satisfy P[ Reject H0 | H0] ≤ α and P[ Reject H0 | H1] ≥ 1−β,
the classical Frequentist error bounds.
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2 Martingale Path Regularity

If Mt is a martingale and a < b are real numbers, denote by ν
(t)
[a,b] the number of “upcrossings”

of the interval [a, b] by Ms prior to time t, i.e., the number of times Ms passes from below a
to above b at times 0 ≤ s ≤ t. Then (as we show below):

E

[

ν
(t)
[a,b]

]

≤ E|Mt| + |a|
b− a

and, in particular, martingale paths don’t oscillate infinitely often— they have left and right
limits at every point. This is also the key lemma for proving the Martingale Convergence
Theorem below. Here’s the idea, attributed to both Doob and to Snell:

Set β0 := 0 and, for n ∈ N, define

αn := inf{t > βn−1 : Mt ≤ a}
βn := inf{t > αn : Mt ≥ b},

or infinity if the indicated event never occurs (i.e., we take inf{∅} = ∞). Under suitable
conditions we have Mαn

≤ a < b ≤ Mβn
, which we now assume1:

Define a process Yt by

Yt :=
∑

n∈N

[Mt∧βn
−Mt∧αn

].

Starting with the first time α1 that Mt ≤ a, Yt accumulates the increments of Mt until the
first time β1 that Mt ≥ b; the process continues if the martingale Mt ≤ a again falls below a
(at time α2), and so forth. All the terms vanish for n large enough that αn > t, so there are

at most 1 + ν
(t)
[a,b] non-zero terms, each at least [b− a] except possibly the last if αn < t < βn

for some n. Then

Yt :=
∑

n∈N

[Mt∧βn
−Mt∧αn

]

≥ (b− a)ν
(t)
[a,b] + [Mt − a]

EYt ≥ (b− a)Eν
(t)
[a,b] + E[Mt − a]

≥ (b− a)Eν
(t)
[a,b] − E(Mt − a)−

≥ (b− a)Eν
(t)
[a,b] − E|Mt| − |a|.

By the Optional Stopping Theorem, Yt is a martingale and hence EYt = EY0 = 0; it follows
that Eν

(t)
[a,b] ≤

(

E|Mt| + |a|
)

/(b− a).

The important conclusion is that Eν
(t)
[a,b] < ∞, so ν

(t)
[a,b] is almost-surely finite— leading to:

1The argument works as given for discrete index sets T , or for continuous index sets with right-continuous
processes Mt, but not quite for arbitrary processes Mt— for example, if Mt = 1Q and 0 ≤ a < b ≤ 1, then
αn = βn = 0 for all n ∈ N. Luckily that can’t happen for martingales, but the argument is more delicate.

It begins by constructing a sequence M
(n)
t := Mγn(t) of martingales with γn(t) = 2−n⌊2nt⌋ and finding a

uniform upper bound for their upcrossings.
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Theorem 1 (Martingale Path Regularity) Let M0
t be a martingale with index set T =

R+. Then with probability one, M0
t has limits from the left and from the right at every point

t ∈ T , and at each t is almost-surely equal to the right-continuous process Mt := limsցtM
0
s .

If the filtration is right-continuous, Ft = ∩s>tFs, then Mt is also a martingale.

If Mt is uniformly bounded in L1, E|Mt| ≤ c < ∞ for all t ∈ T , then by Fatou’s lemma we

can even take t → ∞ so Eν
(∞)
[a,b] ≤ [c + |a|]/(b− a) < ∞, and the number of times ν

(∞)
[a,b] that

Mt ever crosses the interval [a, b] is almost-surely finite. This is the key for proving:

3 Martingale Convergence Theorems

Theorem 2 (Martingale Convergence Theorem) Let Mt be an L1-bounded martingale
(so for some c ∈ R+ it satisfies E|Mt| ≤ c for all t ∈ T ). Then there exists a random variable
M∞ ∈ L1 such that Mt → M∞ a.s. as t → ∞. If {Mt} is Uniformly Integrable (for example,
if (∀t ∈ T )E|Mt|p ≤ cp for some p > 1 and cp < ∞), then also Mt → M∞ in L1.

Proof. Define M∞ := lim inft→∞Mt and M∞ := lim supt→∞Mt. Suppose (for contradic-
tion) that P[M∞ = M∞] < 1. Then there exist numbers a < b for which P[M∞ < a < b <

M∞] > 0. But ν
(∞)
[a,b] = ∞ on this event, contradicting Eν

(∞)
[a,b] ≤

(

c + |a|
)

/(b− a) < ∞. The
result about UI martingales now follows by the UI convergence theorem.

Corollary 1 Let Mt be a martingale and τ a stopping time. Then

EM0 = EMτ

if either {Mt} is uniformly integrable, or if Eτ < ∞ and |Ms −Mt| ≤ c|s− t| a.s. for some
c < ∞.

Proof. Obviously Mτ = limt→∞Mt∧τ a.s ; the family {Mt∧τ} will be UI under either of the
stated conditions.

Note that some condition is necessary in the Corollary above. The simple symmetric random
walk S0 = 0, Sn+1 = Sn±1 (with probability 1/2 each) is a martingale, and the hitting time
τ := inf{t : St = 1} is a stopping time that is almost-surely finite, but

E[Sτ ] = 1 6= 0 = E[S0]

so the conclusion of Corollary 1 fails. Note that Sn is not UI here, and |Ss − St| ≤ |s− t| is
linearly bounded, but Eτ = ∞. For another example, let X ∼ Ge(1

2
) be a geometric random

variable with P[X = x] = 2−x−1 for x ∈ N0, and set Mt := 2t1{X≥t}. Then Mt is a martingale
starting at M0 = 1, τ = X + 1 = inf{t : Mt = 0} is a stopping time with finite expectation
E[τ ] = 2, but

E[Mτ ] = 0 6= 1 = E[M0].

Again Mt is not UI, and this time Eτ < ∞ but |Ms −Mt| is not bounded linearly in |s− t|.
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Theorem 3 (Backwards Martingale Convergence Theorem) Let {Mt} be a martin-
gale indexed by Z or R (or just the negative half-line Z− or R−). Then, without any further
conditions, there exists a random variable M−∞ ∈ L1(Ω,F ,P) such that

lim
t→−∞

Mt = M−∞ a.s. and in L1(Ω,F ,P).

The strong law of large numbers for i.i.d. L1 random variables Xn is a corollary: for n ∈ N,
define Sn :=

∑n
j=1 Xj and M−n = X̄n = Sn/n. Verify that Mt is a martingale for the

filtration Ft = σ{Ms : s ≤ t} (note Xn is F−n+1-measurable but not F−n-measurable), and
that M−∞ is in the tail field and hence (by Kolmogorov’s 0/1 law) is almost-surely constant.
Evidently the constant is µ, so Xn → µ a.s. as n → ∞.

4 Martingale Problem for Markov Chains

In Section (1.1) we found a particular function φ(x) = (q/p)x which, when evaluated along the

random walk Xn, would yield a process M
(3)
n = φ(Xn) that was a martingale. In this section

we consider the general question of finding functions φ(·) for which φ(Xt) is a martingale
for specified Markov chains Xt— or, more general still, of how to create martingales from
processes of the form φ(Xt) − At for “any” function φ.

A discrete time Markov chain is a process Xn indexed by the nonnegative integers n ∈ T :=
N0 and taking values in a discrete state space S with the property that, for each n ∈ T ,
the conditional probability P[A | Fn] of any “future” event A ∈ Fn := σ {Xt : t ≥ n},
given the “past” Fn := σ {Xt : t ≤ n}, depends only on the “present” Xn— i.e., is σ(Xn)-
measurable. Random walks (like the simple random walk of Section (1.1)) are important
examples of Markov chains, but others abound. The distribution of a Markov Chain is
determined by the initial distribution p

(0)
j = P[X0 = j] for j ∈ S and the transition matrix

P
(t)
jk = P[Xt+1 = k | Xt = j] for all t ∈ T and pairs j, k ∈ S. In the important stationary case

P
(t)
jk = Pjk doesn’t depend on t, and p

(0)
j = P[Xt = j] for every t ∈ T , so n-step transition

probabilities P[Xt+n = k | Xt = j] = P n
jk are given by simple matrix powers.

Let Xn be a stationary Markov chain with transition matrix P on a discrete (but not nec-
essarily finite) state space S. Then for φ(Xn) to be a martingale we need for each j ∈ S

0 = E[φ(X1) − φ(X0) | X0 = j]

= Aφ(j) :=
∑

k 6=j

Pjk[φ(k) − φ(j)],

for the operator A called the generator of the process. In this case φ is said to be harmonic.
Even if φ is not harmonic, we can still construct a martingale by subtracting precisely the
right thing:

Mφ(t) := φ(Xt) −
∑

0≤s<t

Aφ(Xs)
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will always be a martingale, starting at φ(X0). In fact, this property characterizes the
Markov chain Xt completely, and is the modern way of defining the Markov process.

4.1 Martingale Problems

In both discrete and continuous time, the most powerful and general way known for con-
structing Markov processes and exploring their properties is to view them as solutions to
a Martingale Problem. We describe it for discretely-distributed processes Xt, but similar
characterizations apply to Markov processes with continuous marginal distributions.

4.2 Discrete Time

Let P
(t)
jk be a (possibly time-dependent) Markov transition matrix on a state space S indexed

by T = N0 or T = Z, so (∀j, k ∈ S) and (∀t ∈ T ),

P
(t)
jk ≥ 0 and

∑

k∈S

P
(t)
jk = 1.

Then an S-valued process Xt indexed by t ∈ T is a Markov chain with transition matrix
P

(t)
jk if and only if it solves the discrete-time Martingale Problem: for all bounded functions

φ : S → R, the process

Mφ(t) := φ(Xt) − φ(X0) −
∑

0≤s<t

∑

j 6=i=Xs

P
(s)
ij [φ(j) − φ(i)]

must be a martingale indexed by t ∈ T . In the homogeneous case where P
(t)
jk ≡ Pjk doesn’t

depend on t, the n-step transition probability is simply the matrix power P n, and the
operator

Gφ(i) =
∑

j 6=i

Pij[φ(j) − φ(i)]

is called the generator of the process. The function φ is called harmonic if Gφ ≡ 0, in which
case φ(Xt) itself is a martingale.

4.2.1 Example: Simple Random Walks

For the symmetric random walk on Z, for example, Gφ(x) = 1
2
[φ(x+ 1)− 2φ(x) + φ(x− 1)],

half the second-difference operator, so all affine functions φ(x) = a + bx (and only they) are
harmonic. Now we’ll consider asymmetric walks.

Let Xt be the simple random walk (2) starting at X0 = x with P[ξj = 1] = p and P[ξj =
−1] = q := (1−p) with 0 < p < 1. To be harmonic a function φ must satisfy 0 ≡ Aφ(x) =
p[φ(x+1)−φ(x)]−q[φ(x)−φ(x−1)], so by induction [φ(x)−φ(x−1)] = (q/p)x[φ(1)−φ(0)].
Summing the geometric series shows that all solutions are of the form φ(x) = a+ b(q/p)x for
p 6= q, and (as before) φ(x) = a + bx for p = q = 1

2
.
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This and the martingale maximal inequality lead to simple proofs of things about the random
walk— for example, if p < q (so Xt is more likely to decrease than increase) and a > x, then
for t > 0,

P[ sup
0≤s≤t

Xs ≥ a] = P[ sup
0≤s≤t

(q/p)Xs ≥ (q/p)a]

≤ (q/p)x

(q/p)a
= (p/q)a−x.

Taking the supremum over all t > 0 (since the bound doesn’t depend on t), we see that the
probability of ever exceeding a decreases geometrically. With a little more work, we can find
exceedence probabilities for lines a + bt too:

Let b ∈ R and set Yt := Xt − bt where Xt is the simple random walk of Section (1.1). Then
Y too is a Markov chain, and the function φ(x) = rx will be harmonic for Y if r satisfies

0 = Aφ(x) = pφ(x + 1 − b) − φ(x) + qφ(x− 1 − b)

= rx−1−b[pr2 − r1+b + q].

The term in brackets
h(r) := pr2 − r1+b + q

vanishes at r = 1 and tends to infinity as r → ±∞. Its derivative at r = 1 is h′(1) = (µ− b)
for µ = (p− q) = (2p− 1); if this doesn’t vanish, then there must exist another root r∗ 6= 1
of h(r∗) = 0 for which Aφ ≡ 0 and hence Mφ(t) := rXt−bt

∗ is a martingale starting at
Mφ(0) = rx∗ . By the Martingale Maximal Inequality (MMI, Theorem 4 on p. 13), for any
a, b ∈ R,

P

[

sup
0≤s≤t

{Xs − bs} ≥ a

]

= P

[

sup
0≤s≤t

{rYs

∗ } ≥ ra∗

]

≤ rx−a
∗ , (8)

giving a bound for the probability that the random walk Xs ever crosses the line y = a+ bs
(since the bound doesn’t depend on t < ∞). In the Roulette example, with p = 9/19 and
b = 0 we have r∗ = q/p = 10/9, so (8) implies

P[Xt ever exceeds a] ≤ (9/10)a−x,

the same bound as before. Now, however, we have new results like

P[Xt ever exceeds (a + t/2)] ≤ (3.382975)x−a

for a symmetric random walk and a ≥ x, since r∗ ≈ 3.382975 is the solution r 6= 1 to
h(r) = [1

2
r2 − r3/2 + 1

2
] = 0.

4.2.2 General Random Walks

Now let {ξj} be iid from any distribution with a MGF M(t) = E[etξj ] that is finite in some
interval around zero. Let Xn := x +

∑

j≤n ξj be a random walk starting at x ∈ R, and let
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a, b ∈ R. Then for any t ∈ R for which M(t) is finite,

Yn := exp {tXn − n logM(t)}

is a martingale and, for any t∗ such that M(t∗) = et∗b, so is

Y ∗
n := exp {t∗(Xn − nb)} .

By the MMI,

P [Xn ever exceeds a + b n] = P

[

sup
n≥0

(Xn − n b) ≥ a

]

= P

[

sup
n≥0

Y ∗
n ≥ et

∗a

]

≤ exp {t∗(x− a)} .

For example, if ξj
iid∼ No(µ, σ2) then M(t) = etµ+t2σ2/2 is finite for all t ∈ R and the equation

M(t∗) = et∗µ+t2
∗
σ2/2 = et∗b

is satisfied for t∗ = 0 or t∗ = 2(b − µ)/σ2. The first of these gives a trivial bound but the
second gives

P [Xn ever exceeds a + b n] ≤ exp
{

2(b− µ)(x− a)/σ2
}

or, for x = µ = 0 < a, simply exp {−2ab/σ2}. This same bound, as it happens, applies to
Brownian motion with drift. Exercise: Find a bound for the probability that a unit-rate
Poisson random walk Xt ever exceeds 1 + 2t (Ans: exp(−1.256431) = 0.2846682).

4.3 Continuous Time

Similar bounds are available for Markov processes indexed by continuous time T = R+, such
as Brownian motion and continuous-time Markov chains.

Let Q
(t)
jk be a (possibly time-dependent) continuous-time Markov transition rate matrix on

a discrete state space S, i.e., a family of matrices on S × S that for each t ∈ T satisfies

(∀j 6= k ∈ S) Q
(t)
jk ≥ 0 and (∀j ∈ S)

∑

k∈S

Q
(t)
jk = 0.

Then an S-valued process Xt is a Markov chain with rate matrix Q
(t)
jk if and only if it solves

the continuous-time Martingale Problem: for all bounded functions φ : S → R, the process

Mφ(t) := φ(Xt) −
∫ t

0

[

∑

j 6=i=Xs

Q
(s)
ij [φ(j) − φ(i)]

]

ds
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must be a martingale starting at Mφ(0) = φ(x). In the homogeneous case where Q
(t)
jk ≡ Qjk

doesn’t depend on t, the time-t transition probability is simply the matrix exponential P t =
exp(tQ) =

∑

n≥0
tn

n!
Qn. The operator

Gφ(i) :=
∑

j∈S

Qij [φ(j) − φ(i)]

is called the (infinitesimal) generator of the process, and Mφ can be written

Mφ(t) := φ(Xt) −
∫ t

0

Gφ(Xs) ds.

If φ is harmonic, then φ(Xt) is a martingale. A similar approach works for processes with
continuous marginal distribution: for Brownian Motion in R

d, for example, Gφ(x) = 1
2
∆φ(x),

half the Laplacian, illustrating why functions that satisfy Gφ ≡ 0 are called harmonic.

4.3.1 Example: SII Jump Processes

The unit-rate Poisson process N(t) is characterized by its initial value of 0 and its generator
Gφ(x) = [φ(x + 1) − φ(x)]. The sum

Xt =
∑

j

uj Nj(νj t)

of independent Poisson processes with rates νj > 0 and jump sizes uj ∈ R is also a continuous
time Markov process, with generator given by

Gφ(x) =
∑

j

[φ(x + uj) − φ(x)] νj

=

∫

R

[φ(x + u) − φ(x)] ν(du) (9)

for φ ∈ C1
b (R), for the discrete measure ν(du) :=

∑

j ujδνj (du). The log ch.f. is

log EeiωXt =

∫

R

[

eiωu − 1
]

ν(du). (10)

Actually Eqns (9, 10) continue to be well-defined and determine the distribution of a Markov
process Xt with stationary independent increments (SII) for any finite Borel measure ν(du)
on R or, since both integrands vanish to first order at zero, even for infinite “Lévy measures”
ν(du) that satisfy the “local L1 condition”

∫

R

(1 ∧ |u|) ν(du) < ∞. (11)
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One example is the gamma process Xt ∼ Ga(αdt, β) whose Lévy measure is given by ν(du) =
αu−1 e−βu 1{u>0} du, and whose independent increments

[Xt −Xs] ∼ Ga(α(t− s), β)

have gamma distributions. Another is the symmetric α-stable (SαS) process Xt ∼ St(α, 0, γt, 0)
with ν(du) = αγ

π
Γ(α) sin(πα

2
) |u|−α−1 du, with α-stable increments. Eqn (11) is only satisfied

for 0 < α < 1, but the approach can be extended to cover the entire range of 0 < α < 2
(including the Cauchy, α = 1) using “compensation”. Ask me if you’d like to know more.

5 Maximal Inequalities

Under mild conditions, the suprema of martingales over finite and even infinite intervals
may be bounded; this makes them extremely useful for bounding the growth of processes.
The usual bounds are of two kinds: bounds on the probability that a martingale Mt (or its
absolute value |Mt|) exceeds a fixed number λ ∈ R in some prescribed time interval, and
bounds on the expectation of the supremum of |Mt|p over some interval, for real numbers
p ≥ 1. Here are a few illustrative results.

Theorem 4 Let Mt be a martingale and let t ∈ T . Then for any λ > 0,

P

[

sup
0≤s≤t

Ms ≥ λ

]

≤ λ−1
EM+

t

P

[

sup
0≤s≤t

|Ms| ≥ λ

]

≤ λ−1
E|Mt|

Proof. Let τ = inf{t ≥ 0 : Mt ≥ λ}. Since both Mt and Mt∧τ are martingales,

EMt = EMt∧τ

= E
{

Mτ1[τ≤t] + Mt1[τ>t]

}

≥ E
{

λ1[τ≤t] + Mt1[τ>t]

}

= λP[τ ≤ t] + E
{

Mt1[τ>t]

}

, so

E[Mt1[τ≤t]] ≥ λP[τ ≤ t] and hence

P

{

sup
0≤s≤t

Ms ≥ λ

}

= P[τ ≤ t]

≤ λ−1
E[Mt1[τ≤t]]

≤ λ−1
E[M+

t 1[τ≤t]]

≤ λ−1
E[M+

t ],
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proving the first assertion. Since −Mt is also a martingale, we also have:

P

{

inf
0≤s≤t

Ms ≤ −λ

}

≤ λ−1
E[M−

t ]; adding these together,

P

{

sup
0≤s≤t

|Ms| ≥ λ

}

≤ λ−1
E[|Mt|].

In fact we proved something slightly stronger (which we’ll need below). Set |M |∗t :=
sup0≤s≤t |Ms|; then

P {|M |∗t ≥ λ} ≤ λ−1
E
[

|Mt|1{|M |∗t≥λ}

]

. (12)

Theorem 5 For any martingale Mt and any real numbers p > 1 and q := p
p−1

> 1,

∥

∥ sup
s≤t

|Ms|
∥

∥

p
≤ q sup

s≤t
‖Ms‖p.

Proof.

By Fubini’s theorem,

E
[

(|M |∗t )p
]

=

∫ ∞

0

pλp−1
P
[

|M |∗t ≥ λ
]

dλ

≤
∫ ∞

0

pλp−1 λ−1
E
[

|Mt|1{|M |∗t≥λ}

]

dλ

= E

∫ |M |∗t

0

pλp−2 |Mt| dλ

=
p

p− 1
E

[

(

|M |∗t
)p−1|Mt|

]

.

Hölder’s inequality asserts that E[Y Z] ≤ {EY p}1/p {EZq}1/q for any nonnegative random
variables Y and Z; applying this with Y = |Mt| and Z = (|M |∗t )p−1, and noting (p−1)q = p,
we get

{E(|M |∗t )p}1 ≤ q E
{(

|M |∗t )p
}1/q

E {|Mt|p}1/p

{E(|M |∗t )p}1−1/q = ‖ |M |∗t ‖p ≤ q ‖Mt‖p = q sup
0≤s≤t

‖Ms‖p.

Note that q ր ∞ as p ց 1, so the bound blows up as p shrinks to one. To achieve an
L1 bound on E|M |∗t we need something slightly stronger than an L1 bound on E|Mt| (see
below).
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In summary: if Mt is a martingale and if t ∈ T then

P[sup
s≤t

Ms ≥ λ] ≤ λ−1
E[M+

t ]

P[min
s≤t

Ms ≤ −λ] ≤ λ−1
E[M−

t ]

P[sup
s≤t

|Ms| ≥ λ] ≤ λ−1
E|Mt|

E sup
s≤t

|Ms|p ≤ qp sup
s≤t

E
[

|Ms|p
]

= qp E
[

|Mt|p
]

(p > 1)

E sup
s≤t

|Ms| ≤ e

e− 1
sup
s≤t

E
[

|Ms| log+(|Ms|)
]

(p = 1)

5.1 Back to Sequential Testing

Suppose {Xj} iid∼ f(x) dx, but we are uncertain whether f = f0 or f = f1 for two candidate

pdf s. The optimal frequentist fixed sample-size test of the hypothesis H0 : {Xj} iid∼ f0(x) dx

against alternative H1 : {Xj} iid∼ f1(x) dx begins by selecting a constant Cn > 0 and proceeds
by “rejecting H0” if the Likelihood Ratio (against f0)

Λn :=

n
∏

j=1

f1(Xj)

f0(Xj)

exceeds the specified constant Cn > 0. The “size” α of the test is the probability of rejection
for a true hypothesis— i.e.,

α = P0[Λn ≥ Cn],

where the subscript “0” on P indicates that the probability is computed under the assumption

H0 that {Xj} iid∼ f0(x) dx. Equivalently we can take logarithms and write

log Λn =

n
∑

j=1

ξj

as the sum of n iid random variables ξj := log
(

f1(Xj)/f0(Xj)
)

. If we set

µ := E[ξj ] σ2 := Var[ξj]

=

∫

log
f1(x)

f0(x)
f0(x) dx =

∫

(

log
f1(x)

f0(x)
− µ

)2
f0(x) dx

= −K(f0 : f1)

then, for large n, the Central Limit Theorem says

α = P0

[

Λn ≥ Cn

]

= P0

[ log Λn − nµ

σ
√
n

≥ logCn − nµ

σ
√
n

]

= P0

[nµ− log Λn

σ
√
n

≤ zα
]

≈ Φ(zα)
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for zα := Φ−1(α) and
Cn = exp

(

nµ− zασ
√
n
)

Even if H0 : {Xj ∼ f0(x) dx} is true, an investigator who accrues more and more data (i.e.,
takes additional observations Xj) in the hope of finding Λn ≥ Cn will eventually succeed—
and so will reject a true hypothesis— with probability one, since the Law of the Iterated
Logarithm asserts that

lim sup
log Λn − nµ

σ
√

2n log logn
= lim sup

∑n
1 (ξj − µ)

σ
√

2n log log n
= 1

with probability one and hence

lim sup
log Λn − nµ

σ
√
n

= ∞,

so P0[ Eventually reject H0, with enough data ] = 1 even for true hypotheses.

Interestingly, the Martingale Maximal Inequality shows that Bayesian analysis does not suffer

from the same problem. Since Λn is a martingale under H0 : {Xj} iid∼ f0(x) dx, the SPRT
that rejects H0 if Λn ≥ U by the MMI satisfies

P0

[

sup
1≤n≤N

Λn ≥ U
]

≤ E0ΛN

U
= 1/U ≈ α/(1 − β)

for all N ∈ N, so even an investigator seeking “significance” by taking observations until the
evidence seems strong will succeed with at most probability α/(1 − β), only slightly above
the nominal type-I error probability of α if (as usual) β is small.

6 Doob’s Martingale

Fix any Y ∈ L1(Ω,F ,P) and let Mt := E[Y | Ft] be the best prediction of Y available at
time t. Then Mt is a uniformly-integrable martingale, and Mt → Y a.s. and in L1.

7 Summary

To summarize, martingales are important because:

1. They have close connections with Markov processes;

2. Their expectations at stopping times are easy to compute;

3. They offer a tool for bounding the maxima and minima of processes;
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4. They offer a tool for establishing path regularity of processes;

5. They offer a tool for establishing the a.s. convergence of certain random sequences;

6. They are important for modeling economic and statistical time series which are, in
some sense, predictions.

Examples:

1. Partial sums Sn = Σn
i=1 Xi of independent mean-zero RV’s

2. Stochastic Integrals. For example: let Mn be your “fortune” at time n in a gambling
game, and let Xn be an IID Bernoulli sequence with probability EXn = p. Preceding
each time n + 1 ∈ N you may bet any fraction Fn you like of your (current) fortune Mn

on the upcoming Bernoulli event Xn+1, at odds (p : 1−p); your new fortune after that
bet will be Mn+1 = Mn(1−Fn) if you lose (i.e., if Xn+1 = 0), and Mn+1 = Mn(1+Fn

1−p
p

)

if you win (i.e., if Xn+1 = 1), or in general Mn+1 = Mn(1 − Fn(1 − Xn+1/p)). If
Fn ∈ σ{X1 · · ·Xn} depends only on information available at time n, then E[Mn+1 |
Fn] = Mn and Mn is a martingale. Hence there is no possible betting strategy Fn based
only on observed information Fn that can lead to a positive expected profit, since
E[Mn −M0] ≡ 0. We can represent Mn in the form

Mn = M0 +

n−1
∑

i=0

FiMi[Yi+1 − Yi]

as the “martingale transform” of the martingale Yn := (Sn − np)/p.

3. Variance of a Sum: Mn =
(
∑n

i=1 Yi

)2 − nσ2, where EYiYj = σ2δij

4. Radon-Nikodym Derivatives:

Mn(ω) = 2−n

∫ (i+1)/2n

i/2n
f(x) dx, i = ⌊2nω⌋

→ M∞(ω) = f(ω) a.s.

5. Leftovers:

• Submartingales: E[X+
t ] < ∞, Xt ∈ Ft, Xt ≤ E[Xs | Ft] for s > t.

• Supermartingales: If Xt is a submartingale then Yt := (−Xt) is a supermartingale,
satisfying Yt ≥ E[Ys | Ft] for s > t.

• Jensen’s inequality: if Mt is a martingale and if φ convex with E[φ(Mt)
+] < ∞,

then Xt = φ(Mt) is a submartingale.
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• Most of the bounds and convergence theorems above extend to sub- or super-
martingales.

• Positive supermartingales always converge: if Yt ≥ 0 is a supermartingale, then
(∃Y∞ ∈ L1) Yt → Y a.s. If {Yt} is UI, also Yt → Y in L1.

• A martingale is both a submartingale and a supermartingale.
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