
Midterm Examination I

STA 711: Probability & Measure Theory

Thursday, 2019 Oct 03, 1:25 – 2:40pm

This is a closed-book exam. You may use a single sheet of
prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, please ask me to

clarify it. Unless a problem states otherwise, you must show
your work. There are blank worksheets at the end of the test

if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as
possible, and to box answers I might not find.

For full credit, answers must be given in closed form with
no unevaluated sums, integrals, limits, maxima, minima, etc.,

or unreduced fractions. Wherever possible, Simplify.

Good luck!
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STA 711: Prob & Meas Theory

Problem 1: Let X ∼ Un(0, 1) be a random variable with the standard
Uniform distribution.

a) (5) Find a real-valued function f(x) so that Y := f(X) has a non-
degenerate1 distribution with expectation E[Y ] = 10, if possible; if not pos-
sible, explain why.
f(x) =

b) (5) Find a real-valued function f(x) so that Y := f(X) has infinite
expectation E[Y ] = +∞, if possible; if not possible, explain why.
f(x) =

c) (5) Find a real-valued function f(x) so that Y := f(X) does not have
an expectation, if possible; if not possible, explain why.
f(x) =

d) (5) Find real-valued functions f(x), g(x) so that Y := f(X) and
Z := g(X) each have non-degenerate distributions, and are independent, if
possible; if not possible, explain why:
f(x) = g(x) =

1The distribution of Y is degenerate if P[Y = c] = 1 for some constant c; otherwise it
is non-degenerate. Equivalently, it is degenerate if its DF takes only the values 0 and 1.
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STA 711: Prob & Meas Theory

Problem 2: Let Ω = (0, 1], F = B(Ω), and P = λ (Lebesgue measure),
and fix {an} ⊂ R and {bn} ⊂ (0, 1]. Define random variables

Xn(ω) := an1{ω≤bn}

a) (10) For bn := 1/n, what conditions must an satisfy to ensure that
‖Xn‖2 ≤ 3 for all n?

b) (10) For bn := 1/n4 and an = nc, for what values of c ∈ R does
∑N

n=1 Xn converge in L2 as N → ∞?
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STA 711: Prob & Meas Theory

Problem 3: Let X and Y be RVs in L4(Ω,F ,P). Give answers below in
terms of x := ‖X‖4 < ∞ and y := ‖Y ‖4 < ∞.

a) (6) Prove that the maximum absolute value Z :=
(

|X| ∨ |Y |
)

is in L4

and give an upper bound for ‖Z‖4 (in terms of x and y).

b) (8) For which r > 0 is XY ∈ Lr? Give an upper bound for ‖XY ‖r.

c) (6) Let A ∈ F be an event with probability a := P[A]. Give and
justify a non-trivial upper bound for E|X|1A = ‖X1A‖1. Recall x := ‖X‖4.
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STA 711: Prob & Meas Theory

Problem 4: Let (Ω,F ,P) be the unit interval Ω = (0, 1] with Borel sets
F = B and Lebesgue measure P = λ. Where possible below, evaluate limits
numerically.

a) (4) Let X(ω) := ω−1/2 and Xn := min(n,X). Find: E[X] =
Does Lebesgue’s monotone convergence theorem apply?2 If so, what does it
say? If not, why? © Yes © No Reasoning:

b) (4) Again X(ω) := ω−1/2 and Xn := min(n,X). Does Lebesgue’s
dominated convergence theorem apply? If so, what is a dominating RV
Y ∈ L1(Ω,F ,P)? If not, why? © Yes © No Reasoning:

2Remember, the MCT covers both increasing sequences Xn (provided Xn ≥ Z ∈ L1)
and decreasing sequences Xn (provided Xn ≤ Z ∈ L1).
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STA 711: Prob & Meas Theory

Problem 4 (cont’d): Still (Ω,F ,P) =
(

(0, 1],B, λ
)

.

c) (4) Let Zn(ω) := ωn. Does Lebesgue’s monotone convergence theorem
apply? If so, what does it say? © Yes © No Reasoning:

d) (4) Let Wn := ω−1/n for n ≥ 2. Does Lebesgue’s monotone conver-
gence theorem apply? If so, what does it say? © Yes © No Reasoning:

e) (4) Let Sn(ω) :=
∑n

j=1 ω
j−1 and S(ω) :=

∑∞
j=1 ω

j−1. Does Lebesgue’s
dominated convergence theorem apply? If so, what does it say? © Yes © No
Reasoning:
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STA 711: Prob & Meas Theory

Problem 5: True or false? Circle T or F. Each answer is worth 2 points.
No explanations are needed, but you can give one if you think the question
is ambiguous. All random variables are real on some (Ω,F ,P).

a) T F The collection A := {A ∈ F : P[A] = 1} is a π-system.

b) T F The collection B := {B ∈ F : P[B] = 0} is a λ-system.

c) T F The collection C := {C ∈ F : P[C] = 0 or 1} is a σ-algebra.

d) T F E[exp(tX)] ≥ 1 + tE[X] for any RV X and any t ∈ R.

e) T F If P[X > t] = P[Y > t] for each t ∈ R then X, Y have the
same distribution.

f) T F If P[X = t] = P[Y = t] for all t ∈ R then X, Y have the same
distribution.

g) T F Xn → π a.s. if and only if Yn := sin(Xn) → 0 a.s.

h) T F If Xj are independent with P[Xj = 1] = pj = 1 − P[Xj = 0]
for some fixed {pj} ⊂ (0, 1), then Yn :=

∏n
j=1 Xj → 0 a.s. as n → ∞.

i) T F If X > 0 and Y > 0 are independent, then E[X/Y ] = E[X]/E[Y ].

j) T F If X > 0 and Y > 0 are independent then, for each t > 0,
P[X + Y > 2t] ≤ P[X > t] + P[Y > t].
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STA 711: Prob & Meas Theory

Blank Worksheet
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STA 711: Prob & Meas Theory

Another Blank Worksheet
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Name Notation pdf/pmf Range Mean µ Variance σ2

Beta Be(α, β) f(x) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1 x ∈ (0, 1) α
α+β

αβ
(α+β)2(α+β+1)

Binomial Bi(n, p) f(x) =
(n
x

)

pxq(n−x) x ∈ 0, · · · , n n p n p q (q = 1 − p)

Exponential Ex(λ) f(x) = λ e−λx x ∈ R+ 1/λ 1/λ2

Gamma Ga(α, λ) f(x) = λα

Γ(α)x
α−1 e−λx x ∈ R+ α/λ α/λ2

Geometric Ge(p) f(x) = p qx x ∈ Z+ q/p q/p2 (q = 1 − p)

f(y) = p qy−1 y ∈ {1, ...} 1/p q/p2 (y = x + 1)

HyperGeo. HG(n,A,B) f(x) =
(Ax)( B

n−x)
(A+B

n )
x ∈ 0, · · · , n nP nP (1−P )N−n

N−1 (P = A
A+B )

Logistic Lo(µ, β) f(x) = e−(x−µ)/β

β[1+e−(x−µ)/β]2
x ∈ R µ π2β2/3

Log Normal LN(µ, σ2) f(x) = 1
x
√

2πσ2
e−(log x−µ)2/2σ2

x ∈ R+ eµ+σ2/2 e2µ+σ2(

eσ
2
−1

)

Neg. Binom. NB(α, p) f(x) =
(x+α−1

x

)

pα qx x ∈ Z+ αq/p αq/p2 (q = 1 − p)

f(y) =
(y−1
y−α

)

pα qy−α y ∈ {α, ...} α/p αq/p2 (y = x + α)

Normal No(µ, σ2) f(x) = 1√
2πσ2

e−(x−µ)2/2σ2
x ∈ R µ σ2

Pareto Pa(α, ǫ) f(x) = (α/ǫ)(1 + x/ǫ)−α−1 x ∈ R+
ǫ

α−1 if α > 1 ǫ2α
(α−1)2(α−2)

if α > 2

f(y) = α ǫα/yα+1 y ∈ (ǫ,∞) ǫ α
α−1 if α > 1 ǫ2α

(α−1)2(α−2) if α > 2 (y = x + ǫ)

Poisson Po(λ) f(x) = λx

x! e
−λ x ∈ Z+ λ λ

Snedecor F F (ν1, ν2) f(x) =
Γ(

ν1+ν2
2

)(ν1/ν2)ν1/2

Γ(
ν1
2

)Γ(
ν2
2

)
× x ∈ R+

ν2
ν2−2 if ν2 > 2

(

ν2
ν2−2

)2 2(ν1+ν2−2)
ν1(ν2−4) if ν2 > 4

x
ν1−2

2

[

1 + ν1
ν2

x
]− ν1+ν2

2

Student t t(ν) f(x) =
Γ( ν+1

2
)

Γ( ν
2

)
√
πν

[1 + x2/ν]−(ν+1)/2 x ∈ R 0 if ν > 1 ν
ν−2 if ν > 2

Uniform Un(a, b) f(x) = 1
b−a x ∈ (a, b) a+b

2
(b−a)2

12

Weibull We(α, β) f(x) = αβ xα−1 e−β xα
x ∈ R+

Γ(1+α−1)

β1/α

Γ(1+2/α)−Γ2(1+1/α)

β2/α


