Midterm Examination I

STA 711: Probability & Measure Theory

Thursday, 2019 Oct 03, 1:25 – 2:40pm

This is a closed-book exam. You may use a single sheet of prepared notes, if you wish, but you may not share materials.

If a question seems ambiguous or confusing, *please* ask me to clarify it. Unless a problem states otherwise, you must **show** your **work**. There are blank worksheets at the end of the test if you need more room for this, and also a pdf/pmf sheet.

It is to your advantage to write your solutions as clearly as possible, and to box answers I might not find.

For full credit, answers must be given in **closed form** with no unevaluated sums, integrals, limits, maxima, minima, *etc.*, or unreduced fractions. Wherever possible, **Simplify**.

Good luck!

Print Name Clearly:

1.	/20
2.	/20
3.	/20
4.	/20
5.	/20
Total:	/100

Version a

Problem 1: Let $X \sim Un(0,1)$ be a random variable with the standard Uniform distribution.

a) (5) Find a real-valued function f(x) so that Y := f(X) has a nondegenerate¹ distribution with expectation $\mathsf{E}[Y] = 10$, if possible; if not possible, explain why.

f(x) =

b) (5) Find a real-valued function f(x) so that Y := f(X) has infinite expectation $\mathsf{E}[Y] = +\infty$, if possible; if not possible, explain why. f(x) =

c) (5) Find a real-valued function f(x) so that Y := f(X) does not have an expectation, if possible; if not possible, explain why. f(x) =

¹The distribution of Y is *degenerate* if P[Y = c] = 1 for some constant c; otherwise it is *non-degenerate*. Equivalently, it is degenerate if its DF takes only the values 0 and 1.

Problem 2: Let $\Omega = (0, 1]$, $\mathcal{F} = \mathcal{B}(\Omega)$, and $\mathsf{P} = \lambda$ (Lebesgue measure), and fix $\{a_n\} \subset \mathbb{R}$ and $\{b_n\} \subset (0, 1]$. Define random variables

$$X_n(\omega) := a_n \mathbf{1}_{\{\omega \le b_n\}}$$

a) (10) For $b_n := 1/n$, what conditions must a_n satisfy to ensure that $||X_n||_2 \leq 3$ for all n?

b) (10) For $b_n := 1/n^4$ and $a_n = n^c$, for what values of $c \in \mathbb{R}$ does $\sum_{n=1}^N X_n$ converge in L_2 as $N \to \infty$?

Problem 3: Let X and Y be RVs in $L_4(\Omega, \mathcal{F}, \mathsf{P})$. Give answers below in terms of $x := ||X||_4 < \infty$ and $y := ||Y||_4 < \infty$.

a) (6) Prove that the maximum absolute value $Z := (|X| \vee |Y|)$ is in L_4 and give an upper bound for $||Z||_4$ (in terms of x and y).

b) (8) For which r > 0 is $XY \in L_r$? Give an upper bound for $||XY||_r$.

c) (6) Let $A \in \mathcal{F}$ be an event with probability $a := \mathsf{P}[A]$. Give and justify a non-trivial upper bound for $\mathsf{E}[X]\mathbf{1}_A = ||X\mathbf{1}_A||_1$. Recall $x := ||X||_4$.

Problem 4: Let $(\Omega, \mathcal{F}, \mathsf{P})$ be the unit interval $\Omega = (0, 1]$ with Borel sets $\mathcal{F} = \mathcal{B}$ and Lebesgue measure $\mathsf{P} = \lambda$. Where possible below, evaluate limits numerically.

a) (4) Let $X(\omega) := \omega^{-1/2}$ and $X_n := \min(n, X)$. Find: $\mathsf{E}[X] =$ Does Lebesgue's monotone convergence theorem apply?² If so, what does it say? If not, why? \bigcirc Yes \bigcirc No Reasoning:

b) (4) Again $X(\omega) := \omega^{-1/2}$ and $X_n := \min(n, X)$. Does Lebesgue's dominated convergence theorem apply? If so, what is a dominating RV $Y \in L_1(\Omega, \mathcal{F}, \mathsf{P})$? If not, why? \bigcirc Yes \bigcirc No Reasoning:

²Remember, the MCT covers *both* increasing sequences X_n (provided $X_n \ge Z \in L_1$) and decreasing sequences X_n (provided $X_n \le Z \in L_1$).

Problem 4 (cont'd): Still $(\Omega, \mathcal{F}, \mathsf{P}) = ((0, 1], \mathcal{B}, \lambda)$

c) (4) Let $Z_n(\omega) := \omega^n$. Does Lebesgue's monotone convergence theorem apply? If so, what does it say? \bigcirc Yes \bigcirc No Reasoning:

d) (4) Let $W_n := \omega^{-1/n}$ for $n \ge 2$. Does Lebesgue's monotone convergence theorem apply? If so, what does it say? \bigcirc Yes \bigcirc No Reasoning:

e) (4) Let $S_n(\omega) := \sum_{j=1}^n \omega^{j-1}$ and $S(\omega) := \sum_{j=1}^\infty \omega^{j-1}$. Does Lebesgue's dominated convergence theorem apply? If so, what does it say? \bigcirc Yes \bigcirc No Reasoning:

Fall 2019

Problem 5: True or false? Circle T or F. Each answer is worth 2 points. No explanations are needed, but you can give one if you think the question is ambiguous. All random variables are real on some $(\Omega, \mathcal{F}, \mathsf{P})$.

- a) $\mathsf{T} \mathsf{F}$ The collection $\mathcal{A} := \{A \in \mathcal{F} : \mathsf{P}[A] = 1\}$ is a π -system.
- b) T F The collection $\mathcal{B} := \{B \in \mathcal{F} : \mathsf{P}[B] = 0\}$ is a λ -system.
- c) T F The collection $\mathcal{C} := \{ C \in \mathcal{F} : \mathsf{P}[C] = 0 \text{ or } 1 \}$ is a σ -algebra.
- d) $\mathsf{T} \mathsf{F} \mathsf{E}[\exp(tX)] \ge 1 + t\mathsf{E}[X]$ for any RV X and any $t \in \mathbb{R}$.

e) $\mathsf{T} \mathsf{F}$ If $\mathsf{P}[X > t] = \mathsf{P}[Y > t]$ for each $t \in \mathbb{R}$ then X, Y have the same distribution.

f) $\mathsf{T} \mathsf{F}$ If $\mathsf{P}[X = t] = \mathsf{P}[Y = t]$ for all $t \in \mathbb{R}$ then X, Y have the same distribution.

g) T F $X_n \to \pi \ a.s.$ if and only if $Y_n := \sin(X_n) \to 0 \ a.s.$

h) T F If X_j are independent with $\mathsf{P}[X_j = 1] = p_j = 1 - \mathsf{P}[X_j = 0]$ for some fixed $\{p_j\} \subset (0, 1)$, then $Y_n := \prod_{j=1}^n X_j \to 0$ a.s. as $n \to \infty$.

i) $\mathsf{T}\mathsf{F}$ If X > 0 and Y > 0 are independent, then $\mathsf{E}[X/Y] = \mathsf{E}[X]/\mathsf{E}[Y]$.

j) T F If X > 0 and Y > 0 are independent then, for each t > 0, P $[X + Y > 2t] \le P[X > t] + P[Y > t]$.

Fall 2019

Blank Worksheet

Another Blank Worksheet

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	n p	npq	(q = 1 - p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	$lpha/\lambda$	$lpha/\lambda^2$	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q = 1 - p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
HyperGeo.	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	n P	$n P (1-P) \frac{N-n}{N-1}$	$(P = \frac{A}{A+B})$
Logistic	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2} \left(e^{\sigma^2} - 1 \right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = \binom{x+\alpha-1}{x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	lpha q/p	$\alpha q/p^2$	(q = 1 - p)
		$f(y) = {\binom{y-1}{y-\alpha}} p^{\alpha} q^{y-\alpha}$	$y\in\{\alpha,\ldots\}$	lpha/p	$lpha q/p^2$	$(y = x + \alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1 + x/\epsilon)^{-\alpha - 1}$	$x \in \mathbb{R}_+$	$\frac{\epsilon}{\alpha-1}$ if $\alpha > 1$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$ if $\alpha>2$	
		$f(y) = \alpha \epsilon^{\alpha} / y^{\alpha + 1}$	$y\in (\epsilon,\infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$ if $\alpha > 1$	$\frac{\epsilon^2 \alpha}{(\alpha-1)^2(\alpha-2)}$ if $\alpha > 2$	$(y = x + \epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
Snedecor F	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times $	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2 - 2}$ if $\nu_2 > 2$	$\left(\frac{\nu_2}{\nu_2-2}\right)^2 \frac{2(\nu_1+\nu_2)}{\nu_1(\nu_2)}$	$\frac{(\nu_2 - 2)}{-4)}$ if $\nu_2 > 4$
		$x^{\frac{\nu_1-2}{2}} \left[1+\frac{\nu_1}{\nu_2}x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0 if $\nu > 1$	$\frac{\nu}{\nu-2}$ if $\nu > 2$	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	$We(\alpha,\beta)$	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha) - \Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	