Convergence

1. Let \(X \) be a strictly positive random variable. Show that:

 (a) \(\lim_{n \to \infty} n \mathbb{E}(\frac{1}{X}1_{[X>n]}) = 0. \)

 (b) \(\lim_{n \to \infty} n^{-1} \mathbb{E}(\frac{1}{X}1_{[X>n-1]}) = 0. \)

2. Let \(X \sim \text{Un}(0, 4] \) be uniformly distributed on the interval \((0, 4]\), and set \(Y := \frac{1}{X} \) and \(Z := \log(4Y) \). Suggestion: First find out what is the distribution of \(Z \), by computing \(P[Z > z] \) for \(z \in \mathbb{R} \). Use \(\varphi(x) := |x| \) for the Markov inequality questions.

 (a) What bound does Markov’s inequality give for \(P[X > 3] \)?

 (b) What bound does Chebychev’s inequality give for \(P[|X - 2| > 1] \)?

 (c) What bound does Markov’s inequality give for \(P[Y > 1] \)?

 (d) What bound does Markov’s inequality give for \(P[Z > 2] \)?

 (e) What are the exact values of \(P[X > 3] \), \(P[|X - 2| > 1] \), \(P[Y > 1] \), and \(P[Z > 2] \)?

3. Let \(A \) and \(B \) be events in \((\Omega, \mathcal{F}, P)\) with probabilities \(a = P(A) \) and \(b = P(B) \) respectively. Show that \(P(A \cap B) \leq \sqrt{ab} \).

4. Suppose \(\{X_n\}, X \) are real valued RVs defined on a probability space \((\Omega, \mathcal{F}, P)\) and that \(X_n(\omega) \to X(\omega) \) for all \(\omega \in \Omega \). Show that for every \(\epsilon > 0 \), there is an event \(\Lambda_\epsilon \) with \(P(\Lambda_\epsilon) < \epsilon \) and

 \[
 \sup_{\omega \in \Lambda_\epsilon} |X(\omega) - X_n(\omega)| \to 0 \quad \text{as} \quad n \to \infty.
 \]

 Thus the convergence is uniform except on an arbitrarily small set. (For more on this result, called Egorov’s Theorem, see page 89 of the text.)

5. For a random variable \(X \), \(1 < p < q < \infty \), show\(^1\) that

 \[
 0 \leq \|X\|_1 \leq \|X\|_p \leq \|X\|_q \leq \|X\|_\infty
 \]

6. For \(1 < p < q < \infty \), show that

 \[
 L_\infty \subset L_q \subset L_p \subset L_1
 \]

 where \(L_p := \{X : \|X\|_p < \infty\} \).

\(^1\)Hint: Jensen’s inequality may help for some parts
7. The “Moment Generating Function” (MGF) of a real-valued random variable \(X\) (or of its distribution \(\mu(dx)\)) is the extended real-valued function \(M_X(t) := \mathbb{E}\exp(tX) = \int_{\mathbb{R}} e^{tx} \mu(dx)\) of \(t \in \mathbb{R}\). Show that a nonnegative random variable \(X \geq 0\) is in \(L_1\) if there exists some \(t > 0\) for which \(M_X(t) < \infty\). Show that the converse may fail—i.e., there exist \(X \geq 0\) in \(L_1\) for which \(M_X(t) = \infty\) for all \(t > 0\).

8. Show that Minkowski’s Inequality fails for \(0 < p < 1\)—i.e., find \((\Omega, \mathcal{F}, \mathbb{P})\) and \(X, Y \in L_p(\Omega, \mathcal{F}, \mathbb{P})\) for which \(\|X + Y\|_p > \|X\|_p + \|Y\|_p\) for some \(0 < p < 1\).