
STA 711: Probability & Measure Theory
Robert L. Wolpert

7 Convergence in R
d and in Metric Spaces

A sequence of elements an of Rd converges to a limit a if and only if, for each ǫ > 0, the
sequence an eventually lies within a ball of radius ǫ centered at a. It’s okay if the first few
(or few million) terms lie outside that ball— and the number of terms that do lie outside
the ball may depend on how big ǫ is (if ǫ is small enough it typically will take millions of
terms before the remaining sequence lies inside the ball). This can be made mathematically
precise by introducing a letter (say, Nǫ) for how many initial terms we have to throw away,
so that an → a if and only if there is an Nǫ < ∞ so that, for each n ≥ Nǫ, |an − a| < ǫ.
Then Nǫ is a finite upper bound for the number of an that can be farther than ǫ from a.

The same notion of convergence really works in any metric space, where we require that
some measure of the distance d(an, a) from an to a tend to zero in the sense that it exceeds
each number ǫ > 0 for at most some finite number Nǫ of terms.

Points an in d-dimensional Euclidean space will converge to a limit a ∈ R
d if and only if

each of their coordinates converges in R; and, since there are only finitely many coordinates,
if they all converge then they do so uniformly (i.e., for each ǫ we can take the same Nǫ for
all d of the coordinate sequences), so all notions of convergence in R

d are equivalent. For
example,

max
1≤i≤d

|xi − yi| ≤
[

∑

(xi − yi)
2
] 1

2 ≤
∑

1≤i≤d

|xi − yi| ≤ d max
1≤i≤d

|xi − yi|

so convergence is identical for all three of these metrics. Convergence is much more complex
and interesting for random variables.

7.1 Convergence of Random Variables

For random variables Xn the idea of convergence to a limiting random variable X is more
delicate, since each Xn is a function of ω ∈ Ω and usually there are infinitely many points
ω ∈ Ω. What should we mean in saying that a sequence Xn converges to a limit X? That
Xn(ω) converges to X(ω) for each fixed ω? Or that Xn(ω) converges uniformly in ω ∈ Ω?
Or that some notion of the distance d(Xn, X) between Xn and the limit X decreases to zero?
Should the probability measure P be involved in some way?

Here are a few different choices of what we might mean by the statement that “Xn converges
to X ,” for a sequence of random variables Xn and a random variable X , all defined on the
same probability space (Ω,F ,P):
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pw: The real numbers Xn(ω) → X(ω) for every ω ∈ Ω (pointwise cgce):

(∀ǫ > 0) (∀ω ∈ Ω) (∃Nǫ,ω < ∞) (∀n ≥ Nǫ,ω) |Xn(ω)−X(ω)| < ǫ.

uni: The sequences of real numbers Xn(ω) → X(ω) uniformly for ω ∈ Ω:

(∀ǫ > 0) (∃Nǫ < ∞) (∀ω ∈ Ω) (∀n ≥ Nǫ) |Xn(ω)−X(ω)| < ǫ.

a.s.: Outside some null event N ∈ F , each sequence of real numbers Xn(ω) → X(ω)
(Almost-Sure convergence, or convergence “almost everywhere” (a.e.)): for some N ∈
F with P[N ] = 0,

(∀ǫ > 0) (∀ω /∈ N ) (∃Nǫ,ω < ∞) (∀n ≥ Nǫ,ω) |Xn(ω)−X(ω)| < ǫ,

i.e., P
{

∪ǫ>0 ∩N<∞ ∪n≥N |Xn(ω)−X(ω)| ≥ ǫ
}

= 0.

L∞: Outside some null eventN ∈ F , the sequences of real numbersXn(ω) → X(ω) converge
uniformly (“almost uniform” or “L∞” convergence): for some N ∈ F with P[N ] = 0,

(∀ǫ > 0) (∃Nǫ < ∞) (∀n ≥ Nǫ) (∀ω /∈ N ) |Xn(ω)−X(ω)| < ǫ.

pr.: For each ǫ > 0, the probabilities P[|Xn −X| > ǫ] → 0 (convergence “in probability”,
or “in measure”):

(∀ǫ > 0) (∀η > 0) (∃Nǫ,η < ∞) (∀n ≥ Nǫ,η) P[|Xn −X| > ǫ] < η.

L1: The expectation E[|Xn −X|] converges to zero (convergence “in L1”):

(∀ǫ > 0) (∃Nǫ < ∞) (∀n ≥ Nǫ) E[|Xn −X|] < ǫ.

Lp: For some fixed number p > 0, the expectation of the pth absolute power E[|Xn −X|p]
converges to zero (convergence “in Lp,” sometimes called “in the pth mean”):

(∀ǫ > 0) (∃Nǫ < ∞) (∀n ≥ Nǫ) E[|Xn −X|p] < ǫ.

dist.: The distributions of Xn converge to the distribution of X , i.e., the measures P ◦X−1
n

converge in some way to P ◦X−1 (“vague” or “weak” convergence, or “convergence in
distribution”, sometimes written Xn ⇒ X):

(∀ǫ > 0)
(

∀φ ∈ Cb(R)
)

(∃Nǫ,φ < ∞) (∀n ≥ Nǫ,φ) E
[

|φ(Xn)− φ(X)|
]

< ǫ.

Which of these eight notions of convergence is right for random variables? The answer is
that all of them are useful in probability theory for one purpose or another. You will want
to know which ones imply which other ones, under what conditions. All but the first two
(pointwise, uniform) notions depend upon the measure P; it is possible for a sequence Xn to
converge to X in any of these senses for one probability measure P, but to fail to converge for
another P′. Most of them can be phrased as metric convergence for some notion of distance
between random variables:
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pr.: Xn → X in probability if and only if d0(X,Xn) → 0 as real numbers, where:

d0(X, Y ) := E

( |X − Y |
1 + |X − Y |

)

L1: Xn → X in L1 if and only if d1(X,Xn) := ‖X −Xn‖1 → 0 as real numbers, where:

‖Z‖1 := E|Z|

Lp: Xn → X in Lp if and only if dp(X,Xn) → 0 as real numbers, where:

dp(X, Y ) :=

{

(E|X − Y |p)1/p p ≥ 1

E|X − Y |p 0 < p < 1.

L∞: Xn → X almost uniformly if and only if d∞(X,Xn) := ‖X − Xn‖∞ → 0 as real
numbers, where:

‖Z‖∞ := sup{r ≥ 0 : P[|Z| > r] > 0}

As the notation suggests, convergence in probability and in L∞ are in some sense limits
of convergence in Lp as p → 0 and p → ∞, respectively. Almost-sure convergence is an
exception: there is no metric notion of distance d(X, Y ) for which Xn → X almost surely if
and only if d(X,Xn) → 0 (unless Ω is countable or P is atomic).

7.1.1 Almost-Sure Convergence

Let {Xn} and X be a collection of RVs on some (Ω,F ,P). The set of points ω for which
Xn(ω) does converge to X(ω) is just

⋂

ǫ>0

∞
⋃

m=1

∞
⋂

n=m

[ω : |Xn(ω)−X(ω)| ≤ ǫ],

the points which, for all ǫ > 0, have |Xn(ω)−X(ω)| less than ǫ for all but finitely-many n.
The sequence Xn is said to converge “almost everywhere” (a.e.) to X , or to converge to X
“almost surely” (a.s.), if this set of ω has probability one, or (equivalently) if its complement
is a null set:

P

[

⋃

ǫ>0

∞
⋂

m=1

∞
⋃

n=m

[ω : |Xn(ω)−X(ω)| > ǫ]
]

= 0.

Despite their appearance these intersections and unions over ǫ > 0 are only countable, since
we need include only rational ǫ (or, for that matter, any sequence ǫk tending to zero, such
as ǫk = 1/k). Thus Xn → X a.e. if and only if, for each ǫ > 0,
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P

[

∞
⋂

m=1

∞
⋃

n=m

[ω : |Xn(ω)−X(ω)| > ǫ]
]

= 0. (a.e.)

This combination of intersection and union occurs frequently in probability, and has a name;
for any sequence En of events, [

⋂∞
m=1

⋃∞
n=mEn] is called the limit supremum or lim sup of

the {En}, denoted “lim supEn”, and is sometimes described more colorfully as [En i.o.], the
set of points in En “infinitely often.” Its complement is the limit infimum or lim inf of
the sets Fn := Ec

n, [
⋃∞

m=1

⋂∞
n=m Fn]: the set of points in all but finitely many of the Fn.

This is denoted “lim inf Fn”. Since P is countably additive, and since the intersection in the
definition of lim sup is decreasing and the union in the definition of lim inf is increasing,
always we have
P[
⋃∞

n=mEn] ց P[
⋂∞

m=1

⋃∞
n=mEn] and P[

⋂∞
n=m Fn] ր P[

⋃∞
m=1

⋂∞
n=m Fn] as m → ∞. Thus,

Theorem 1 Xn → X P-a.s. if and only if for every ǫ > 0,

lim
m→∞

P[|Xn −X| > ǫ for some n ≥ m] = 0.

In particular, Xn → X P-a.s. if
∑

n<∞ P[|Xn −X| > ǫ] < ∞ for each ǫ > 0 (why?).

7.1.2 Convergence In Probability

The sequence Xn is said to converge to X “in probability” (pr.) if, for each ǫ > 0,

P[ω : |Xn(ω)−X(ω)| > ǫ] → 0. (pr.)

If we denote by En the event [ω : |Xn(ω)−X(ω)| > ǫ] we see that convergence almost surely
requires that P[

⋃

m≥n Em] → 0 as n → ∞, while convergence in probability requires only
that P[En] → 0. Thus:

Theorem 2 If Xn → X a.s. then Xn → X pr.

For another proof, if Xn → X (a.s.) then the DCT implies that P
[

|Xn − X| > ǫ
]

=
E1{|Xn−X|>ǫ} → 0 for each ǫ > 0. Here is a partial converse:

Theorem 3 If Xn → X pr., there is a subsequence nk such that Xnk
→ X a.s as k → ∞.

Proof. Set n0 := 0 and, for each integer k ≥ 1, set

nk := inf

{

n > nk−1 : P

[

ω : |Xn(ω)−X(ω)| > 1

k

]

≤ 2−k

}

.
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For any ǫ > 0 we have 1
k
≤ ǫ eventually (namely, for k ≥ m0 :=

⌈

1
ǫ

⌉

) and for each m ≥ m0,

P

[

∞
⋃

k=m

{

ω : |Xnk
(ω)−X(ω)| > ǫ

}

]

≤ P

[

∞
⋃

k=m

{

ω : |Xnk
(ω)−X(ω)| > 1

k

}]

≤
∞
∑

k=m

P

{

ω : |Xnk
(ω)−X(ω)| > 1

k

}

≤
∞
∑

k=m

2−k = 21−m

≤ ǫ for m ≥ m0 ∨ ⌈log2(2/ǫ)⌉.

In fact, this characterizes convergence in probability:

Theorem 4 Let {Xn}, X be random variables on (Ω,F ,P). Then Xn → X pr. if and only
if every sequence N ∋ nk ր ∞ has a subsequence nki such that Xnki

→ X a.s as i → ∞.

Proof. The “only if” (⇒) direction is just Theorem3. Suppose (for contradiction) that
Xn 6→ X pr.; then for some ǫ > 0 and δ > 0 there are infinitely-many n for which P[|Xn−X| >
ǫ] > δ. Let nk be an increasing sequence satisfying this bound. By hypothesis, there
is a subsequence along which Xnki

→ X a.s.; but by Theorem2, also Xnki
→ X pr, so

P[|Xnki
−X| > ǫ] → 0, a contradiction.

Theorem 5 Let {Xn}, X be real-valued random variables on (Ω,F ,P) with Xn → X pr.
and let φ : R → R be continuous. Then Yn := φ(Xn) → Y := φ(X) pr.

Proof. For an easy but indirect proof, simply apply Theorem4. For a more direct approach,
begin by selecting any ǫ > 0 and δ > 0. Find a compact setKǫ ⊂ R with P[X ∈ Kǫ] ≥ 1−ǫ/2;
since φ is uniformly continuous on Kǫ, find η > 0 such that

(∀x ∈ Kǫ)(∀y ∈ R) |x− y| ≤ η ⇒ |φ(x)− φ(y)| ≤ δ.

Now, since Xn → X pr., find N ∈ N such that

(∀n ≥ N) P[|Xn −X| > η] ≤ ǫ/2.

Then for n ≥ N ,

P[|Yn − Y | > δ] ≤ P[X /∈ Kǫ] + P[X ∈ Kǫ, |φ(Xn)− φ(X)| > δ]

≤ P[X /∈ Kǫ] + P[X ∈ Kǫ, |Xn −X| > η]

≤ ǫ/2 + ǫ/2 = ǫ.

The same result (with the same proof) holds for random variables Xn, X taking values in
any σ-compact complete separable metric space X and, in particular, for X = R

d.
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7.1.3 A Counter-Example

If Xn → X a.s. implies Xn → X pr., and if the converse holds at least along subsequences,
are the two notions really identical? Or is it possible for RVs Xn to converge to X pr., but
not a.s.? The answer is that the two notions are different, and that a.s. convergence is
strictly stronger than convergence pr. Here’s an example:

First notice that every integer n ∈ N can be written uniquely in the form n = i + 2j for
integers j ≥ 0 and 0 ≤ i < 2j (set j := ⌊log2 n⌋ and i := n − 2j). Let (Ω,F ,P) be the
unit interval with Borel sets and Lebesgue measure. Define a sequence of random variables
Xn : Ω → R by

Xn(ω) =

{

1 if i
2j

< ω ≤ i+1
2j

0 otherwise
where n = i+ 2j, 0 ≤ i < 2j.

SO,

X1 is one on 1 interval of length 1, namely (0, 1];
X2, X3 are one on 2 intervals each of length 1/2, whose union is (0, 1];

X4, . . . , X7 are one on 4 intervals each of length 1/4, whose union is (0, 1];
X8, . . . , X15 are one on 8 intervals each of length 1/8 whose union is (0, 1];

and, in general, each Xn is one on an interval of length 2−j. Since 1
n
≤ 1

2j
< 2

n
,

P[|Xn| > ǫ] = 2−j <
2

n
→ 0

for each 0 < ǫ < 1 and Xn → 0 pr. as n → ∞.

On the other hand, for every j > 0 we have each ω ∈ Ω in one of the 2j intervals of length
2−j where some Xn is one,

(∀j ∈ N) Ω =
2j−1
⋃

i=0

( i

2j
,
i+ 1

2j

]

=
2j+1−1
⋃

n=2j

[

ω : Xn(ω) = 1
]

.

Thus for every ω ∈ Ω and j ∈ N there is some n ≥ 2j with Xn(ω) = 1 (and so there
are infinitely-many such Xn). SO, [ω : Xn(ω) → 0] is empty, not a set of probability one!
Obviously Xn does not converge a.s, although it does converge pr.

This example is a building-block for several examples to come, so getting to know it well
is worthwhile. Try to verify that Xn → 0 in probability (how large must n be to ensure
P[|Xn| > δ] < ǫ?) and in Lp (how large must n be to ensure ‖Xn‖p < ǫ?) but not almost
surely (what is {ω : Xn → 0}? Why?). Find ‖Xn‖p explicitly. Why doesn’t Xn → 0 a.s.?
What would happen if we multiplied Xn by n? By n2? By j := ⌊log2 n⌋? What about the
subsequence Yn := X2n? Does Xn converge in L∞?
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7.1.4 Another Counter-Example

Let {An} be independent events on some probability space (Ω,F ,P) with probability P[An] =
1/n (or any other sequence that tends to zero but is not summable). Then the RVsXn := 1An

converge to zero (pr.), because P[|Xn| > ǫ] ≤ P[An] → 0, but the event E := {ω : Xn(ω) 6→
0} that the {Xn} do not converge contains lim supAn (on which lim supXn(ω) = 1), and so
P[E] = 1 by the second Borel-Cantelli lemma. Thus Xn does not converge to zero a.s.

7.1.5 Summary

In summary, for 1 < p < q < ∞ the convergence implications are:

L∞

Lq

Lp

L1

pr.

a.s.

with partial converses (pr. → a.s. along subsequences, pr. → L1, Lp, Lq under UI— see the
next section). All of these imply convergence in distribution, which we’ll consider later.
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7.2 Uniform Integrability

Let Y ≥ 0 be integrable on some probability space (Ω,F ,P), so

E[Y ] =

∫

Ω

Y dP < ∞.

By Lebesgue’s DCT it follows that

lim
t→∞

E[Y 1{Y >t}] = lim
t→∞

∫

[ω:Y (ω)>t]

Y dP = 0

since
{

Y 1{Y >t}

}

is dominated by Y ∈ L1 and converges to zero a.s. as t → ∞.

0 2 4 6 8 10

0
2

4
6

8
1

0

Y

Y
 1

(Y
>t

)

t

Consequently, for any sequence of random variables Xn that are dominated by Y in the sense
that |Xn| ≤ Y a.s.,

E[|Xn| 1{|Xn|>t}] ≤ E[Y 1{Y >t}] → 0, uniformly in n.

Call a collection {Xα} uniformly integrable (or simply UI) if E[|Xα| 1{|Xα|>t}] → 0 uniformly
in α as t → ∞, even if it isn’t dominated by some integrable Y ∈ L1. The big result is:

Theorem 6 If Xn → X ∈ L1 (pr.) and if Xn is UI then Xn → X in L1.

Proof. Without loss of generality take X ≡ 0. Fix any ǫ > 0; find (by UI) tǫ > ǫ such that
E[|Xn| 1{Xn>tǫ}] ≤ ǫ for all n. Now (by Xn → X pr.) find Nǫ ∈ N such that, for n ≥ Nǫ,
P[|Xn| > ǫ] < ǫ/tǫ. Then:

E
[

|Xn|
]

=

∫

[|Xn|≤ǫ]

|Xn| dP+

∫

[ǫ<|Xn|≤tǫ]

|Xn| dP+

∫

[tǫ<|Xn|]

|Xn| dP

≤
∫

[|Xn|≤ǫ]

ǫ dP +

∫

[ǫ<|Xn|≤tǫ]

tǫ dP +

∫

[tǫ<|Xn|]

|Xn| dP

≤ ǫ + tǫ × P
[

|Xn| > ǫ
]

+ ǫ

≤ 3ǫ.
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Theorem 6 has a partial converse: if {Xn} ⊂ L1 and Xn → X pr. and if E|Xn| → E|X| < ∞,
then {Xn} is UI (see Theorem9 on p. 10).

Similarly, for any p > 0, Xn → X (pr.) and |Xn|p UI (for example, |Xn| ≤ Y ∈ Lp, or
‖Xn‖q ≤ B < ∞ for some q > p— see Theorem7) gives Xn → X (Lp). In the special case
of |Xn| ≤ Y ∈ L1 this is just Lebesgue’s Dominated Convergence Theorem (DCT), in
a little stronger version than we proved in Week 4 because here we require only Xn → X
(pr.), while then we required Xn → X (a.s.).

We have seen that {Xn} is UI whenever |Xn| ≤ Y ∈ L1, but UI is more general than that.
Here are two more criteria. The first is called the “crystal ball condition”:

Theorem 7 If {Xα} is uniformly bounded in Lp for some p > 1 then {Xα} is UI.

Proof. Let B ∈ R+ be an upper bound for ‖Xα‖p and set q := p
p−1

. By Hölder’s inequality

E
[

|Xα| 1{|Xα|>t}

]

≤ ‖Xα‖p ‖1{|Xα|>t}‖q
≤ B {P[|Xα| > t]}1/q

≤ B {E [|Xα|p/tp]}1/q by Markov’s inequality

= B
{

‖Xα‖pp/tp
}1/q

= B ‖Xα‖p−1
p /tp−1 since p/q = p− 1

≤ Bp t1−p → 0

uniformly in {α}.

Theorem 8 The random variables {Xα} are UI if and only if they are uniformly bounded
in L1 and

(∀ǫ > 0)(∃δ > 0)(∀α)(∀A ∈ F) P(A) < δ ⇒ E[|Xα|1A] < ǫ.

If (Ω,F ,P) is non-atomic, the condition “{Xα} is uniformly bounded in L1” is unnecessary.

Proof. Straightforward. If (Ω,F ,P) is non-atomic, for each ǫ > 0 find δ > 0 by hypothesis
and then cover Ω with N := ⌊1 + 1/δ⌋ sets Ai ∈ F with P(Ai) < δ to see E|Xα| < Nǫ
uniformly. Try to offer an example to illustrate what can go wrong if P has an atom ω∗ ∈ Ω
with c = P[{ω∗}] > 0.

Here’s an extension to Theorem 6. In fact, Xn → X in L1 if and only if {Xi} are UI:
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Theorem 9 Let {Xn}, X ∈ L1(Ω,F ,P) with Xn → X pr. Then the following are equivalent:

1. {Xn} is UI

2. Xn → X in L1

3. E|Xn| → E|X|

Proof. Since 1 ⇒ 2 by Theorem6 and 2 ⇒ 3 by the triangle inequality, it remains only to
show that 3 ⇒ 1. Let Xn → X pr. and E|Xn| → E|X|. Fix ǫ > 0 and, for each t > 0, set

ft(x) :=











|x| 0 ≤ |x| ≤ t

t(t + 1− |x|) t < |x| ≤ t + 1

0 t+ 1 < |x| < ∞

and note that 0 ≤ |x|1{|x|≤t} ≤ ft(x) ≤ |x|1{|x|≤t+1} and 0 ≤ ft(x) ≤ t (draw a plot).

Since X ∈ L1, E|X|1{|X|>t} → 0 as t → ∞ by DCT so we can find t sufficiently large that

E|X|1{|X|>t} < ǫ. (1)

Since ft is continuous and bounded, ft(Xn) → ft(X) as n → ∞ in probability by Theorem5
and also in L1 by DCT. For large enough n (say, n ≥ N ′), ‖ft(Xn)− ft(X)‖1 ≤ ǫ and so

E|Xn|1{|Xn≤t+1|} ≥ Eft(Xn) ≥ Eft(X)− ǫ ≥ E|X|1{|X|≤t} − ǫ. (2)

Since E|Xn| → E|X|, for sufficiently large n (say, n ≥ N ≥ N ′)

E|Xn| ≤ E|X|+ ǫ. (3)

Upon subtracting (2) from (3) we have

E|Xn|1{|Xn|>t+1} ≤ E|X|1{|X|>t} + 2ǫ.

Applying (1) we get
E|Xn|1{|Xn|>t+1} < 3ǫ

completing the proof that {Xn} is UI.
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7.3 Cauchy Convergence

Every form of convergence we have considered for random variables except a.s. can be repre-
sented as convergence in a metric space. A sequence Xn converges to a limit X in a metric
space if every ball centered at X contains all but finitely-many of {Xn}. Sometimes we
wish to consider a sequence Xn that converges to some limit, without knowing the limit
in advance. The concept of Cauchy Convergence is ideal for this— we insist that for each
ǫ > 0, all but finitely-many of the ǫ-balls centered at points Xm of the sequence contain
all but finitely-many of the points. For any of distance measures dp of Section (7.1), with
0 ≤ p ≤ ∞, say “Xn is a Cauchy sequence in Lp” if

(∀ǫ > 0)(∃Nǫ < ∞)(∀m,n ≥ Nǫ) dp(Xm, Xn) < ǫ.

The spaces Lp for 0 ≤ p ≤ ∞ are all complete in the sense that if Xn is Cauchy for dp then
there exists X ∈ Lp for which dp(Xn, X) → 0. To see this, take an increasing subsequence
Nk along which dp(Xm, Xn) < 2−k for n ≥ m ≥ Nk, and set X0 := 0 and N0 = 0; for
k ∈ N set Yk := XNk

− XNk−1
. Check to confirm that X :=

∑∞
k=1 Yk is well-defined and

X ∈ Lp a.s. Since XNk
=

∑k
j=1 Yj, we have (X−XNk

) =
∑

j>k Yj and, by triangle inequality

and summing the geometric series, dp

(

(X,XNk
)
)

< 2−k; also dp((Xn, XNk
) < 2−k, because

n ≥ Nk. Thus dp(Xn, X) ≤ 21−k for n ≥ Nk, so dp(Xn, X) → 0 as n → ∞ and Xn → X in
Lp.

7.4 Convergence in Distribution

Some of the most famous results in probability theory concern the limiting distribution of
sequences of random variables. For example,

• Central Limit Theorem: For iid {Xn} ⊂ L2 and large n, (Sn − nµ)/
√
nσ2 has

approximately the Normal No(0, 1) distribution;

• Law of Small Numbers: For independent N0-valued random variables Xi with small
means µi, Sn has approximately the Poisson Po(λn) distribution with mean λn =
∑n

i=1 µi;

• Extreme Value or Three Types Theorem: For iid {Xn} and suitable sequences
{an}, {bn} of constants, max{(Xj − an)/bn : j ≤ n} has approximately the Gumbel,
Fréchet, or reversed Weibull distribution.

But what does it mean to have a distribution “approximately”???

If Xn has the discrete uniform distribution on the points {i/n} for 1 ≤ i ≤ n, and if n
is huge (say, 251 ≈ 1017) then most of us would regard Xn as “approximately” a standard
uniform Un(0, 1) random variable— in fact, this is the best one can hope for in a 64-bit
double-precision floating-point representation. Yet each Xn has a discrete distribution while
the limit is a continuous distribution, so whatever we mean by “converging in distribution”
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it can’t involve either density functions or probability mass functions, and it is too much to
ask for the distributions µn(B) = P[Xn ∈ B] to converge for every Borel set B ⊂ R.

In this example the distribution functions Fn(x) = P[Xn ≤ x] do in fact converge at every
x ∈ R, but that too is a bit too much to ask— consider constant random variables Yn :=
−1/n, for example, which converge almost-surely to Y := 0, but the distribution functions
do not converge at the point y = 0. This is closer to the right idea, however:

Definition 1 Let {µn(dx)} and µ(dx) be distributions on a measurable space (X , E). Say
“µn converges in distribution to µ” or write “µn ⇒ µ” if

∫

X

φ(x)µn(dx) →
∫

X

φ(x)µ(dx)

as n → ∞ for every continuous bounded function φ : X → R.

If {Xn} are random variables with distributions {µn}, we also say that “Xn converges in
distribution to µ” and write “Xn ⇒ µ.” This definition works not only for real-valued
random variables where X = R and E = B is the Borel sets, but also in R

d or any other
complete separable metric space X with Borel sets E . The connection with distribution
functions is given by:

Proposition 1 Let {µn(dx)} and µ(dx) be distributions on the real line (R,B), and let
Fn(x) := µn

(

(−∞, x]
)

and F (x) := µ
(

(−∞, x]
)

be the associated DFs. Then the following
are equivalent:

• µn ⇒ µ;

• Fn(x) → F (x) on any dense set of {x} in R;

• Fn(x) → F (x) at every x ∈ R where F (x−) = F (x) is continuous.

A similar but more general result for complete separable metric spaces X (like Rn) with their
Borel sets is that µn ⇒ µ if and only if µn(B) → µ(B) for every Borel set B whose boundary
∂B := B ∩ Bc has zero measure for the limiting distribution, µ(∂B) = 0. Convergence in
distribution is weaker than any of the other forms of convergence we have considered:

Proposition 2 Let {Xn}, X be random variables on some probability space (Ω,F ,P) with
distributions {µn}, µ, and suppose Xn → X pr. Then Xn ⇒ µ.

The proof is a simple application of the UI Convergence Theorem to the (uniformly bounded
and hence UI) random variables φ(Xn).

Convergence in distribution is strictly weaker than any other notion, because it even applies
if the {Xn} are defined on different probability spaces (Ωn,Fn,Pn), where none of the other
forms of convergence even makes sense. As usual there is a partial converse, however:
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Proposition 3 Let µn ⇒ µ on the real line (R,B). Then there exists a probability space
(Ω,F ,P) and random variables {Xn}, X with distributions {µn}, µ for which Xn → X a.s.

It is enough to take Ω = (0, 1], F = B, P = λ, and for ω ∈ Ω set

Xn(ω) := inf
{

x ∈ R̄+ : Fn(x) ≥ ω
}

X(ω) := inf
{

x ∈ R̄+ : F (x) ≥ ω
}

and verify that Xn(ω) → X(ω) for all but countably-many ω ∈ Ω.

7.5 Metrics on Distributions [Optional]

Convergence in distribution can be metrized by the Lévy-Prokhorov metric. For Borel prob-
ability measures µ, ν on a complete separable metric space (X , d), set

dLP(µ, ν) := inf
{

ǫ > 0 : µ(A) ≤ ν(Aǫ) + ǫ (4a)

and ν(A) ≤ µ(Aǫ) + ǫ for all A ∈ B(X )
}

where Aǫ := {y ∈ X : (∃x ∈ A) d(x, y) < ǫ} = ∪x∈ABǫ(x), the union of open ǫ-balls around
all points in A. In d = 1 dimension this reduces to the Lévy metric for the DFs F and G of
µ and ν,

dLP(F,G) := inf {ǫ > 0 | F (x− ǫ) ≤ G(x) ≤ F (x+ ǫ) for all x ∈ R}

While convergence “in distribution” (and metric (4a)) is the most important notion of close-
ness and convergence of probability distributions, several others arise. Many of these are
described and compared in the Central Limit Theorem notes for Week 9 at

http://www2.stat.duke.edu/courses/Fall20/sta711/lec/topics/dstn.pdf.

Some of the most important are:
Total Variation:

dTV(µ, ν) := sup {|µ(A)− ν(A)| : A ∈ B(X )} (4b)

= inf {P[X 6= Y : X ∼ µ, Y ∼ ν]} .

Let f and g be the densities of µ and ν with respect to any σ-finite measure λ that dominates
both of them— like Lebesgue measure, for continuous distributions; or counting measure for
discrete ones; or µ + ν for any measures. Then dTV(µ, ν) can be evaluated as half the L1

distance between their densities,

=1
2

∫

X

|f(x)− g(x)| λ(dx),

Hellinger:
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Again if µ(dx) = f(x)λ(dx) and ν(dx) = g(x)λ(dx) have densities, the Hellinger Distance is

dH(µ, ν) :=

{

1

2

∫

X

(

√

f(x)−
√

g(x)
)2

λ(dx)

}1/2

=

{

1−
∫

X

√

f(x)g(x) λ(dx)

}1/2

Hellinger and Total Variation determine the same topology, i.e., so a sequence converges in
one if and only if it does in the other.
Kolmogorov-Smirnov:

The Kolmogorov-Smirnov distance between two probability measures on the real line X = R

is the L∞ distance between their DFs:

dKS(µ, ν) := sup
x∈R

{
∣

∣µ
(

(−∞, x]
)

− ν
(

(−∞, x]
)
∣

∣

}

(4c)

Wasserstein W1:

The Wasserstein W1 distance between two distributions on a complete separable metric
space (X , d) is

dW(µ, ν) := inf
γ∈Γ(µ,ν)

∫∫

X×X

d(x, y) γ(dx dy) (4d)

= inf {‖X − Y ‖1 : X ∼ µ, Y ∼ ν}

where Γ(µ, ν) is the space of probability measures on X 2 with marginals µ and ν. It can also
be evaluated in terms of unit Lipschitz functions f(x) (i.e., those for which |f(x)− f(y)| ≤
|x− y| for all x, y) as:

= sup
f :X→R

{
∣

∣

∣

∣

∫

X

f(x)µ(dx)−
∫

X

f(x) ν(dx)

∣

∣

∣

∣

: Lip(f) ≤ 1

}

.

Sometimes called the “transportation metric,” dW can be interpreted as the minimum cost
of moving mass distributed on X according to µ to mass distributed according to ν if moving
cost is proportional to the product of mass times distance. There are also Lp versions of this
metric, the Wasserstein Wp distance, but they are encountered less frequently.
Kullback-Leibler Divergence:

The “Kullback-Leibler divergence” (Kullback and Leibler, 1951), also called Relative En-
tropy, from distribution µ (with pdf f(x)) to ν (with pdf g(x)) on a Polish space X is:

KL(µ‖ν) :=
∫

X

− log

[

ν(dx)

µ(dx)

]

µ(dx) =

∫

X

− log

[

g(x)

f(x)

]

f(x) λ(dx). (4e)

It is nonnegative, because log y ≤ y − 1 for all y > 0 (or by Jensen’s inequality), but it is
not actually a distance metric because it’s not symmetric in µ and ν and doesn’t satisfy the
triangle inequality. It does determine a topology, though, and hence a notion of convergence.
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7.6 Summary: UI and Convergence Concepts

I. Uniform Integrability (UI)

A. |Xn| ≤ Y ∈ Lr, r > 0, implies
∫

[|Xn|r>t]
|Xn|r dP ≤

∫

[Y r>t]
Y r dP → 0 as t → ∞

uniformly in n, since Y r ∈ L1, so {|Xn|r} is UI.

B. If (Ω,F ,P) nonatomic, Xn UI iff (∀ǫ)(∃δ)(∀n) ∋ P[Λ] ≤ δ ⇒
∫

Λ
|Xn| dP < ǫ (take

δ = ǫ
2t
). If (Ω,F ,P) has atoms, also need uniform bound (∀n)E|Xn| ≤ B.

C. E|Xn|q ≤ cq < ∞ implies |Xn|p UI for each p < q.

1. Remark: not for p = q (counter-eg: Xn := n1(0,1/n])

D. Main result (Thm 9): If Xn → X pr., then

|Xn|p is UI ⇔ Xn → X in Lp ⇔ E|Xn|p → E|X|p.

II. Convergence in Distribution (aka Vague Convergence)

A. Xn → X pr. iff (∀nk ↑)(∃nki ↑) ∋ Xnki
→ X a.s. (by contradiction)

B. Xn → X a.s. and g(x) continuous implies g(Xn) → g(X) a.s.

C. Xn → X pr. and g(x) continuous ⇒ g(Xn) → g(X) pr. (use A, B)

D. Definition: Xn ⇒ X if
(

∀φ ∈ Cb(R)
)

Eφ(Xn) → Eφ(X)

1. Prop: Xn → X pr. implies Xn ⇒ X (use II.C)

2. Prop: Xn ⇒ X implies Fn(r) → F (r) for all r s.t. F (r) = F (r−).

a. Remark: Even if Xn ⇒ X , Fn(r) may not converge where F (r) jumps;

b. Remark: Even if Xn ⇒ X , fn(r) := F ′
n(r) may not converge to

f(r) := F ′(r); in fact, either may fail to exist.

III. Implications among cgce notions: a.s., pr., Lp, Lq, L∞, dist. (0<p<q<∞):

A. a.s. =⇒ pr. (by Easy Borel-Cantelli)

1. pr. =⇒ a.s. along subsequences

2. pr. 6⇒ a.s. (counter-eg: Xn(ω) = 1(i/2j ,(i+1)/2j ](ω), n = i+ 2j)

B. Lp =⇒ pr. (by Markov’s inequality)

1. pr. =⇒ Lp under Uniform Integrability

2. pr. 6⇒ Lp (counter-eg: Xn = n1/p1(0,1/n])

C. Lq =⇒ Lp for p < q (by Jensen’s inequality)

1. Lp 6⇒ Lq (counter-eg: Xn = n1/q1(0,1/n])

D. L∞ =⇒ Lp (simple estimate, or ‖X‖p ր ‖X‖∞ as p ր by Jensen)

1. Lp 6⇒ L∞ (counter-eg: Xn = 1(0,1/n])

E. L∞ =⇒ a.s. (almost-uniform cgce implies almost-pointwise cgce)

F. pr. =⇒ dist. (II.D.1 above)

1. dist. 6⇒ pr. (counter-eg: Xn, X on different spaces or iid {Xn})
2. dist. =⇒ a.s. (∃(Ω,F ,P), Xn, X ∋ Xn → X a.s.)
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