
STA 711: Probability & Measure Theory

Robert L. Wolpert

8 The Laws of Large Numbers

The traditional interpretation of the probability of an event E is its asymptotic frequency : the limit
as n → ∞ of the fraction of n repeated, similar, and independent trials in which E occurs. Similarly
the “expectation” of a random variable X is taken to be its asymptotic average, the limit as n → ∞
of the average of n repeated, similar, and independent replications of X. For statisticians trying to
make inference about the underlying probability distribution f(x | θ) governing observed random
variables Xi, this suggests that we should be interested in the probability distribution for large n of
quantities like the sample average of the RVs, X̄n := 1

n

∑n
i=1Xi or the partial sum Sn :=

∑n
i=1Xi.

Three of the most celebrated theorems of probability theory concern this quantity. For independent
random variables Xi, all with the same probability distribution satisfying E|Xi|3 < ∞, set µ := EXi,
σ2 := E|Xi − µ|2, and Sn :=

∑n
i=1 Xi. The three main results are:

Laws of Large Numbers (LLN):

Sn − nµ

σn
−→ 0 (pr. and a.s.)

Central Limit Theorem (CLT):

Sn − nµ

σ
√
n

=⇒ No(0, 1) (in dist.)

Law of the Iterated Logarithm (LIL):

lim sup
n→∞

± Sn − nµ

σ
√
2n log log n

= 1.0 (a.s.)

Together these three give a clear picture of how quickly and in what sense 1
nSn tends to µ. We

begin with the Law of Large Numbers (LLN), first in its “weak” form (asserting convergence pr.)
and then in its “strong” form (convergence a.s.). There are several versions of both theorems. The
simplest requires the Xi to be IID and L2; stronger results allow us to weaken (but not eliminate)
the independence requirement, permit non-identical distributions, and consider what happens if we
relax the L2 requirement and allow the RVs to be only L1 (or worse!).

The text covers these things well; to complement it I am going to: (1) Prove the simplest version,
and with it the Borel-Cantelli theorems; and (2) Show what happens with Cauchy random variables,
which don’t satisfy the requirements (the LLN fails).

8.1 Proofs of the Weak and Strong Laws

Here are two simple versions (one Weak, one Strong) of the Law of Large Numbers; first we prove
an elementary but very useful result:

Proposition 1 (Markov’s Inequality) Let φ(x) ≥ 0 be non-decreasing on R+. For any random
variable X ≥ 0 and constant a ∈ R+,

P[X ≥ a] ≤ P[φ(X) ≥ φ(a)] ≤ E[φ(X)]/φ(a)
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To see this, set Y := φ(a)1A for the event A := {φ(X) ≥ φ(a)} and note Y ≤ φ(X) so EY ≤ Eφ(X).

Theorem 1 (L2 WLLN) Let {Xn} be independent random variables with the same mean µ =
E[Xn] and uniformly bounded variance E(Xn − µ)2 ≤ B for some fixed bound B < ∞. Set Sn :=
∑

j≤nXj and X̄n := Sn/n = 1
n

∑

j≤nXj . Then, as n → ∞,

(∀ǫ > 0) P[|X̄n − µ| > ǫ] → 0. (1)

Proof.

E(Sn − nµ)2 =

n
∑

i=1

E(Xi − µ)2 ≤ nB

so for ǫ > 0

P[|X̄n − µ| > ǫ] = P[(Sn − nµ)2 > (nǫ)2]

≤ E[(Sn − nµ)2]/n2ǫ2

≤ B/n ǫ2 → 0 as n → ∞.

This Law of Large Numbers is called weak because its conclusion is only that X̄n converges to zero in
probability (Eqn (1)); the strong Law of Large Numbers asserts convergence of a stronger sort, called
almost sure convergence (Eqn (2) below). If P[|X̄n − µ| > ǫ] were summable then by B-C we could
conclude almost-sure convergence; unfortunately we have only the bound P[|X̄n − µ| > ǫ] < c/n
which tends to zero but isn’t summable. It is summable along the subsequence n2, however; our
approach to proving a strong LLN is to show that |Sk−Sn2 | isn’t too big for any n2 ≤ k < (n+1)2.

Theorem 2 (L2 SLLN) Under the same conditions,

P[X̄n → µ] = 1. (2)

Proof. Without loss of generality take µ = 0 (otherwise subtract µ from each Xn), and fix ǫ > 0.
Set Sn :=

∑

j≤nXj . Then

P
[

|Sn2 | > n2ǫ
]

≤ E|Sn2 |2/(n2ǫ)2 ≤ n2B/n4ǫ2 = B/n2ǫ2, so

P
[

|Sn2 | > n2ǫ i.o.
]

= 0 by B-C ⇒ Sn2/n2 → 0 a.s. Set

Dn := max
n2≤k<(n+1)2

|Sk − Sn2 |

ED2
n = E

[

max
n2≤k<(n+1)2

|Sk − Sn2 |2
]

≤ E

∑

n2≤k<(n+1)2

|Sk − Sn2 |2 =
∑

n2≤k<(n+1)2

E|Sk − Sn2 |2

≤
∑

n2≤k<(n+1)2

(k − n2)B ≤ 4n2B , so

P[Dn > n2ǫ] ≤ 4n2B/n4 ǫ2 = 4B/n2 ǫ2 ⇒ Dn/n
2 → 0 a.s.

∣

∣

∣

∣

Sk

k

∣

∣

∣

∣

≤ |Sn2 |+Dn

n2
→ 0 a.s. as k → ∞, where n = ⌊

√
k⌋.
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Each of these LLNs required only that Cov(Xn,Xm) ≤ 0, not pairwise (let alone full) independence.
To see that, suppose EXn = µ for all n, Cov(Xn,Xm) ≤ 0 for n 6= m, and VXn ≤ B. Then

E(Sn − nµ)2 = E

n,n
∑

i,j=1,1

(Xi − µ)(Xj − µ)

=

n
∑

i=1

E(Xi − µ)2 + 2
∑

1≤i<j≤n

E(Xi − µ)(Xj − µ)

≤ nB.

We’ll see below in Section (8.4) that even positive correlations are okay if they fall off fast enough—
e.g., if |Cov(Xn,Xm)| ≤ ar|n−m| for some a > 0, 0 < r < 1— with a similar proof. The uniform
L2 bound isn’t necessary either. There are a variety of LLNs with either or both of the L2 bound
and independence weakened in some way, but they can’t be dispensed with altogether— consider
iid Cauchy random variables, for example, to show L2 isn’t entirely superfluous, or Xn ≡ X1 with
any nontrivial distribution to show the need for at least a modicum of independence.

8.2 Other Strong Laws

Let’s first state two lemmas:

Lemma 1 (Lévy) If {Xn} is an independent sequence then
∑∞

n=1Xn converges (pr.) if and only
if it converges a.s.

Lemma 2 (Kronecker) Suppose {xn} ⊂ R and 0 < an ր ∞. Then
∞
∑

k=1

xk
ak

converges ⇒ 1

an

n
∑

k=1

xk → 0.

and, from these, prove two useful theorems. First,

Theorem 3 (Kolmogorov Convergence Criterion) Let {Xn} ⊂ L2 be an independent se-
quence with means µn := EXn and variances σ2

n := V(Xn). Then
∞
∑

n=1

σ2
n < ∞ ⇒

∞
∑

n=1

(Xn − µn) converges a.s.

Proof. Without loss of generality take µn ≡ 0. Fix ǫ > 0. For 1 ≤ n ≤ N < ∞,

P
[
∣

∣SN − Sn

∣

∣ > ǫ
]

= P
[
∣

∣

∑

n<k≤N

Xk

∣

∣ > ǫ
]

≤ E
(

∑

n<k≤N

Xk

)2
/ǫ2 by Markov’s inequality

≤
∑

n<k≤∞

σ2
k/ǫ

2 by independence

→ 0 as n → ∞ since
∑

σ2
n < ∞,

Page 3Page 3Page 3



STA 711 Week 8 R L WolpertSTA 711 Week 8 R L WolpertSTA 711 Week 8 R L Wolpert

so Sn is a convergent Cauchy sequence in probability and, by Lemma 1, also converges a.s.

Theorem 4 (Kronecker L2 SLLN) Let {Xn} ⊂ L2 be an independent sequence, and let 0 <
bn ր ∞ be a monotone sequence such that

∑

n

V

(Xn

bn

)

< ∞.

Then
Sn − ESn

bn
→ 0 a.s.

In particular, for iid {Xn} we may take bn = n to see X̄n → µ a.s., a SLLN for independent but
non-identically-distributed L2 random variables.

Proof. Again take E[Xn] ≡ 0, and set Yn := Xn/bn, with variance σ2
n. By hypothesis

∑

σ2
n < ∞,

so
∑

Yn coverges a.s. by Theorem 3. Thus, for almost every ω,
∑

Xn(ω)/bn converges and, by
Lemma 2, also Sn/bn → 0.

Kolmogorov’s L1 SLLN

The most-cited and most-used version of the Strong Law for iid sequences is that due to Kolmogorov,
with no moment assumptions:

Theorem 5 (Kolmogorov’s L1 SLLN) Let {Xn} be iid and set Sn :=
∑

i≤nXi. There exists
c ∈ R such that

X̄n = Sn/n → c a.s.

if and only if E|X1| < ∞, in which case c = EX1.

This has the pleasant consequence that the usual estimators for the mean and variance of iid
sequences are strongly consistent:

Corollary 1

{Xn} ⊂ L1 ⇒ X̄n → µ a.s.

{Xn} ⊂ L2 ⇒
1

n

∑

i≤n

(Xn − X̄n)
2 → σ2 a.s.

Page 4Page 4Page 4



STA 711 Week 8 R L WolpertSTA 711 Week 8 R L WolpertSTA 711 Week 8 R L Wolpert

Here’s a quick summary of some LLN facts:

I. Weak version, non-iid, L2: µi = EXi, σij = E[Xi − µi][Xj − µj]

A. Yn = (Sn − Σµi)/n satisfies EYn = 0, EY 2
n = 1

n2Σi≤nσii +
2
n2Σi<j≤nσij ;

1. If σii ≤ M and σij ≤ 0 or |σij | < Mr|i−j|, r < 1,
Chebychev =⇒ Yn → 0 (pr.)

2. (pairwise) IID L2 is OK

II. Strong version, non-iid, L2: EXi = 0, EX2
i ≤ M , EXiXj ≤ 0.

A. P[|Sn| > nǫ] < Mn
n2ǫ2 = M

nǫ2

1. P[|Sn2 | > n2ǫ] < M
n2ǫ2

, ΣnP[|Sn2 | > n2ǫ] < Mπ2

6ǫ2
< ∞

2. Borel-Cantelli: P[|Sn2 | > n2ǫ i.o.] = 0, ∴ 1
n2Sn2 → 0 a.s.

3. Dn := maxn2≤k<(n+1)2 |Sk − Sn2 |, so
ED2

n ≤ 2nE|S(n+1)2−1 − Sn2 | ≤ 4n2M

4. Chebychev: P[Dn > n2ǫ] < 4n2M
n4ǫ2

, ∴ Dn/n
2 → 0 a.s.

B. |Sk/k| ≤ |S
n2 |+Dn

n2 → 0 a.s. as k → ∞, QED

1. Bernoulli RVs, normal number theorem, Monte Carlo integration.

III. Weak version, pairwise-iid, L1

A. Equivalent sequences: If
∑

n P[Xn 6= Yn] < ∞, then:

1.
∑

n |Xn − Yn| < ∞ a.s.

2.
∑n

i=1 Xi converges iff
∑n

i=1 Yi converges

3. If (∃an ր)(∃X) ∋ 1
an

∑

i≤nXi → X then 1
an

∑

i≤n Yi → X too.

B. If {Xn} are iid L1 then Xn, Yn := Xn1[|Xn|≤n] are equivalent

IV. Strong version, iid, L1

A. Kolmogorov: For {Xn} IID, (∃c ∋ X̄n → c a.s.) ⇔ (Xn ∈ L1).

V. Strong version, non-iid, Lp

A. Let {Xn} be independent and uniformly bounded in Lp for some p > 1. Then
(1/n)

∑n
j=1(Xj − µj) → 0 a.s.

VI. Counterexamples: Cauchy,

A. Xi ∼ dx
π[1+x2]

=⇒ P[|Sn|/n ≤ ǫ] ≡ 2
π tan−1(ǫ) 6→ 1, WLLN fails.

B. P[Xi = ±n] = c
n2 , n ≥ 1; Xi /∈ L1, and Sn/n 6→ 0 (pr.) or a.s.

C. P[Xi = ±n] = c
n2 logn , n > 1; Xi /∈ L1, but Sn/n → 0 (pr.) and not a.s.

D. Medians: for ANY RVs Xn → X∞ pr., then mn → m∞ if m∞ is unique.
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8.3 An example where the LLN fails: iid Cauchy RVs

Let Xi be iid standard Cauchy RVs, with

P[X1 ≤ t] =

∫ t

−∞

dx

π[1 + x2]
=

1

2
+

1

π
arctan(t)

and characteristic function (we’ll learn more about these next week)

E eiωX1 =

∫ ∞

−∞
eiωx

dx

π[1 + x2]
= e−|ω|.

The sample mean X̄n := Sn/n has characteristic function

E eiωSn/n = E ei
ω

n
[X1+···+Xn] =

(

E ei
ω

n
X1

)n
= (e−|ω

n
|)n = e−|ω|.

Thus Sn/n also has the standard Cauchy distribution with P[Sn/n ≤ t] = 1
2 + 1

π arctan(t). In
particular, Sn/n does not converge almost surely, or even in probability.

8.4 A LLN for Correlated Sequences

In many applications we would like a Law of Large Numbers for sequences of random variables
that are not independent. For example, in Markov Chain Monte Carlo integration, we have a
stationary Markov chain {Xt} (this means that the distribution of Xt is the same for all t and that
the conditional distribution of a future value Xu for u > t, given the past {Xs | s ≤ t}, depends
only on the present Xt) and want to estimate the population mean E[φ(Xt)] for some function φ(·)
by the sample mean

E[φ(Xt)] ≈
1

T

T−1
∑

t=0

φ(Xt).

Even though they are identically distributed, the random variables Yt := φ(Xt) won’t be indepen-
dent if the Xt aren’t independent, so the LLN we already have doesn’t quite apply.

Theorem 6 If an L2 sequence {Yt} has a constant mean µ = EYt and a summable autocovariance
γst := E(Ys − µ)(Yt − µ) that satisfies

∑∞
t=−∞ |γst| ≤ c < ∞ uniformly in s, then the random

variables {Yt} obey a LLN:

E[Yt] = lim
T→∞

1

T

T−1
∑

t=0

Yt.

Proof. Let ST be the sum of the first T Yts and (as usual) set ȲT := ST /T . The variance of ST is

E[(ST − Tµ)2] =

T−1
∑

s=0

T−1
∑

t=0

E[(Ys − µ)(Yt − µ)]

≤
T−1
∑

s=0

∞
∑

t=−∞

|γst| ≤ T c,
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so ȲT has variance V[ȲT ] ≤ c/T and by Chebychev’s inequality

P[|ȲT − µ| > ǫ] ≤ E[(ȲT − µ)2]

ǫ2
=

E[(ST − Tµ)2]

T 2ǫ2

≤ T c

T 2ǫ2
=

c

T ǫ2
→ 0 as T → ∞.

As in the iid case, this WLLN can be extended to a SLLN by first applying it along the sequence
{T 2 : T ∈ N}, applying B/C, then filling in the gaps.

A sequence of random variables Yt is called stationary if each Yt has the same probability distri-
bution and, moreover, each finite set (Yt1+h, Yt2+h, · · · , Ytk+h) has a joint distribution that doesn’t
depend on h. The sequence is called “L2” if each Yt has a finite variance σ2 (and hence also a
well-defined mean µ); by stationarity it also follows that the covariance

γst = E[(Ys − µ)(Yt − µ)]

is finite and depends only on the absolute difference |t− s| (write: γst = γ(s − t) = γ(t− s)).

Corollary 2 If a stationary L2 sequence {Yt} has a summable covariance function, i.e., satisfies
∑∞

t=−∞ |γ(t)| ≤ c < ∞, then

E[Yt] = lim
T→∞

1

T

T−1
∑

t=0

Yt.

Note we didn’t need full stationarity. It would be good enough for {Yt} to be “2nd-order stationary,”
i.e., to have a common mean µ = EYt and a covariance function γst = E(Ys − µ)(Yt −µ) = γ(s− t)
that depends only on the absolute difference |s− t| and satisfies

∑

t∈Z |γ(t)| < ∞.

8.4.1 Examples

1. IID: If Xt are independent and identically distributed, and if Yt = φ(Xt) has finite variance
σ2, then Yt has a well-defined finite mean µ and ȲT → µ.

Here γst =

{

σ2 if s = t

0 if s 6= t
, so c = σ2 < ∞.

2. AR1: If Zt are iid No(0, 1) for −∞ < t < ∞, µ ∈ R, σ > 0, −1 < ρ < 1, and

Xt := µ+ σ

∞
∑

s=0

ρsZt−s

= ρXt−1 + α+ σZt, (*)

where α = (1 − ρ)µ, then the Xt are identically distributed (all with the No
(

µ, σ2

1−ρ2

)

dis-

tribution) but not independent (since γst = σ2

1−ρ2
ρ|s−t| 6= 0 for s 6= t). This is called an

“autoregressive process” (because of equation (*), expressing Xt as a regression of previous
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Xss) of order one (because only one earlier Xs appears in (*)), and is about the simplest
non-iid sequence occuring in applications. Since the covariance is summable,

∞
∑

t=−∞

|γ(t)| = σ2

1− ρ2
· 1 + |ρ|
1− |ρ| =

σ2

(1− |ρ|)2 < ∞,

we again have X̄T → µ a.s. as T → ∞.

3. Geometric Ergodicity: If for some 0 < ρ < 1 and c > 0 we have γst ≤ cρ|s−t| for a Markov
chain Yt the chain is called Geometrically Ergodic (because cρt is a geometric sequence), and
the same argument as for AR1 shows that Ȳt converges. Meyn & Tweedie (1993), Tierney
(1994), and others have given conditions for MCMC chains to be Geometric Ergodic, and
hence for the almost-sure convergence of sample averages to population means. The mean
squared error MSE := E|Ȳt − µ|2 for a geometrically ergodic sequence is bounded by MSE ≤
1+ρ
1−ρ (σ

2/t) ≍ 1/t, but the constant grows without bound as ρ → 1. Irreducible aperiodic
finite-state Markov chains are geometrically ergodic, with ρ the second-largest eigenvalue of
the one-step transition matrix.

4. General Ergodicity: Consider the three sequences of random variables on (Ω,F ,P) with
Ω = (0, 1] and F = B(Ω), each with X0(ω) = ω:

(a) Xn+1 := 2Xn (mod 1);

(b) Xn+1 := Xn + α (mod 1) (Does it matter if α is rational?);

(c) Xn+1 := 4Xn(1−Xn).

For each there exists a probability measure P (a distribution for X0) such that the Xn are
identically distributed— the Un(0, 1) distribution for (a) and (b), and the “arcsin” distri-
bution Be(12 ,

1
2 ) for (c), and each is of the form Xn = X0

(

T n(ω)
)

for a measure-preserving
transformation T : Ω → Ω, a measurable mapping T : Ω → Ω for which P(E) = P

(

T−1(E)
)

for each E ∈ F . Such a transformation is called ergodic if the only T -invariant events (those
that satisfy E = T−1(E)) are “almost trivial” in the sense that P[E] = 0 or P[E] = 1. A
sequence Xn := X0 ◦ T n is called ergodic if T is. Both sequences (a) and (c) are ergodic
(can you show that?); sequence (b) is ergodic if and only if α is irrational (what happens if
α ∈ Q?)

Birkhoff’s Ergodic Theorem asserts that, if Xn ∈ L1(Ω,F ,P) is an integrable ergodic se-
quence, then X̄n converges almost-surely to a T -invariant limit X∞ as n → ∞. Since only
constants are T -invariant for ergodic sequences, it follows that X̄n → µ := EXn a.s. for er-
godic sequences. The conditions here are weaker than those for the usual LLN; in all three
cases above, for example, all ergodic, each Xn is completely determined by X0 so there is
complete dependence, with σ(Xn) ⊂ σ(Xm) ⊂ σ(X0) for all 0 ≤ m ≤ n!

For any L1 distribution µ(dx) on (R,B), we can construct iid random variables {Xn} iid∼ µ(dx)
on the product probability space

(

Ω = R∞,F = B∞,P =
⊗

µ
)

and a measure-preserving
transformation T : Ω → Ω called the left-shift by

Xn(ω1, ω2, ω3, · · · ) := ωn T (ω1, ω2, ω3, · · · ) := (ω2, ω3, ω4, · · · ).
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The σ-algebra T = {A : A = T−1(A)} of T -invariant sets is just the tail σ-algebra for the
independent random variables {Xn}, so by Kolmogorov’s zero-one law T is almost-trivial
and so T is ergodic. It follows from Birkhoff’s Ergodic Theorem that the sample mean
X̄n := 1

n

∑n
j=1Xj converges almost-surely to a T -invariant and hence almost-surely constant

random variable whose value must be µ, proving a strong LLN for iid random variables that
assumes only L1:

Theorem 7 (L1 iid SLLN) Let {Xn} be iid L1(Ω,F ,P) random variables with mean µ = E[Xn].
Set Sn :=

∑

j≤nXj and X̄n := Sn/n = 1
n

∑

j≤nXj . Then:

P[X̄n → µ] = 1.

Thus the “space average”
∫

R
Xn dµ and the limiting “time average” limn→∞ X̄n coincide for ergodic

sequences.
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