OLS estimates for slope and intercept: \(b = \frac{\sum(X - \bar{X})(Y - \bar{Y})}{\sum(X - \bar{X})^2} \), \(a = \bar{Y} - b\bar{X} \). Also, \(SE_b = \frac{s}{\sqrt{\sum(X - \bar{X})^2}} \).

95% confidence interval for the mean (of \(Y_0 \)) at level \(X_0 \):

\[
(a + bX_0) \pm t_{n-2}^{0.025} \sqrt{\frac{1}{n} + \frac{(X_0 - \bar{X})^2}{\sum(X - \bar{X})^2}}
\]

95% prediction/confidence interval for an individual \(Y_0 \) at level \(X_0 \):

\[
(a + bX_0) \pm t_{n-2}^{0.025} \sqrt{\frac{1}{n} + \frac{(X_0 - \bar{X})^2}{\sum(X - \bar{X})^2} + 1}
\]

1. Auditors often are required to compare the audited (or current) value \(Y \) of an inventory item with the book (or listed) value \(X \). If a company is keeping its inventory and books up to date, there should be a strong linear relationship between these values. A sample of 10 inventory items from a certain company gave the following data. (We are interested in the model \(Y = \alpha + \beta X + e \).)

\[
\begin{align*}
\bar{Y} &= 72.1 \\
\bar{X} &= 72 \\
\Sigma(X - \bar{X})(Y - \bar{Y}) &= 54243 \\
\Sigma(X - \bar{X})^2 &= 54714 \\
s^2 &= \frac{1}{n-2}\Sigma(Y - \bar{Y})^2 = 7.10568
\end{align*}
\]

a. (2 points) Estimate the expected change in audited value for a 1-unit change in book value.

\[
b = \frac{\Sigma(X - \bar{X})(Y - \bar{Y})}{\Sigma(X - \bar{X})^2} = \frac{54243}{54714} \approx 0.9914
\]

b. (3 points) If the book value is 100, what is your best estimate for the audited value?

\[
a = \bar{Y} - b\bar{X} = 72.1 - \frac{54243}{54714}(72) \approx 0.7198
\]

If you use the rounded estimate for \(b \) from part (a) above, you will get \(a \approx 0.7192 \). This is fine, but just be aware that where you round can influence your answer slightly.

So, your best estimate is \(a + b(100) \approx 0.7198 + (0.9914)(100) \approx 99.86 \).

c. (2 points) Find a 90% confidence interval for \(\beta \).

\[
b \pm t_{0.05}^{0.025} \sqrt{\frac{s^2}{\sum(X - \bar{X})^2}}
\]

\[
0.9914 \pm 1.86 \sqrt{7.10568/54714} = (0.9702, 1.0126)
\]
d. (3 points) Give a 90% interval for the average audit value if the book value is 100.

\[
(a + bX_0) \pm t_{0.025}^{n-2} \sqrt{\frac{1}{n} + \frac{(X_0 - X)^2}{\Sigma(X - \bar{X})^2}}
\]

\[
99.859 \pm 1.86\sqrt{7.10568} \sqrt{\frac{1}{10} + \frac{(100 - 72)^2}{54714}}
\]

\[
99.859 \pm 1.6765
\]

(98.183, 101.54)