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1 Straight Line Regression Models

We begin with the simple straight line regression model

y

i

= �+ �x

i

+ �

i

where the design points x

i

are �xed in advance, and the measurement/sampling

errors �

i

are independent and normally distributed, �

i

� N(0; �

2

) for each i =

1; : : : ; n: In this context, we have looked at general modelling questions, data

and the �tting of least squares estimates of � and �: Now we turn to more

formal likelihood and Bayesian inference.

1.1 Likelihood and MLEs

The formal parametric inference problem is a multi-parameter problem: we

require inferences on the three parameters (�; �; �

2

): The likelihood function

has a simple enough form, as we now show. Throughout, we do not indicate the

design points in conditioning statements, though they are implicitly conditioned

upon. Write Y = fy

1

; : : : ; y

n

g and X = fx

1

; : : : ; x

n

g: Given X and the model

parameters, each y

i

is the corresponding zero-mean normal random quantity

�

i

plus the term � + �x

i

; so that y

i

is normal with this term as its mean and

variance �

2

: Also, since the �

i

are independent, so are the y

i

: Thus

(y

i

j�; �; �

2

) � N(�+ �x

i

; �

2

)

with (conditional) density function

p(y

i

j�; �; �

2

) = expf�(y

i

� �� �x

i

)

2

=2�

2

g=(2��

2

)

1=2

for each i: Also, by independence, the joint density function is

p(Y j�; �; �

2

) =

n

Y

i=1

p(y

i

j�; �; �

2

):
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Given the observed response values Y this provides the likelihood function for

the three parameters: the joint density above evaluated at the observed and

hence now �xed values of Y; now viewed as a function of �; �; �

2

as they vary

across possible parameter values. It is clear that this likelihood function is given

by

p(Y j�; �; �

2

) / exp(�Q(�; �)=2�

2

)=�

n

where

Q(�; �) =

n

X

i=1

(y

i

� �� �x

i

)

2

and where a constant term 1=(2�)

n=2

has been dropped.

Let us look at computing the joint maximum likelihood estimates (MLEs)

of the three parameters. This involves �nding the values (�̂;

^

�; �̂

2

) such that

p(Y j�̂;

^

�; �̂

2

) > p(Y j�; �; �

2

) for any other parameter values (�; �; �

2

): We do

this as follows.

� For any �xed value of �

2

; the likelihood function is a strictly increasing

function of Q(�; �): Hence, changing (�; �) to decrease the value of Q im-

plies that the value of the likelihood function increases. Clearly, choosing

(�; �) to minimise Q implies that we maximise the likelihood function. As

a result, the MLEs of (�; �) for any speci�c value of �

2

are simply the

LSEs.

� From the earlier discussion of least square estimation, we know that the

LSEs (�̂;

^

�) do not, in fact, depend on the value of the variance �

2

: As a

result, the full three-dimensional maximisation is solved at the LSE values

(�̂;

^

�) and by choosing �̂

2

to maximise p(Y j�̂;

^

�; �

2

) as a function of just

�

2

: This trivially leads to

�̂

2

=

n

X

i=1

�̂

2

i

=n

where �̂

i

= y

i

� �̂ �

^

�x

i

for each i; this MLE of �

2

is the usual residual

sum of squares with divisor n:

1.2 Reference Bayesian Analyses

1.2.1 Parametrisation and Reference Prior

To develop the reference Bayesian posterior distribution for (�; �; �

2

) it is tra-

ditional to reparameterise from �

2

to the precision parameter � = 1=�

2

: This

is done simply for clarity of exposition and ease of development. Plugging

�

2

= 1=� in the likelihood function leads simply to

p(Y j�; �; �) / �

n=2

exp(��Q(�; �)=2)

{ de�ning the joint likelihood function for the three parameters (�; �; �):
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Bayesian inference requires a prior p(�; �; �) { a trivariate prior density

de�ned on the model parameter space. Here we use the traditional reference

prior in which:

� The three parameters are independent, so p(�; �; �) = p(�)p(�)p(�):

� As a function of �; the log-likelihood function is quadratic, indicating that

the likelihood function will contribute a normal form in �: Hence a normal

prior for � would be conjugate, leading to a normal posterior. On this

basis, a normal prior with an extremely large variance (as in reference

analysis of normal models) will represent a vague or uninformative prior

position. Taking the formal limit of a normal prior with a variance tending

to in�nity provides the traditional reference prior p(�) / constant:

� The same reasoning applies to �; leading to the traditional reference prior

p(�) / constant:

� As a function of � alone, the likelihood function has the same form as that

of a gamma density function in �: Hence a gamma prior for � would be

conjugate, leading to a gamma posterior. On this basis, a gamma prior

with very small de�ning parameters (as in reference analysis of Poisson or

exponential models) will represent a vague or uninformative prior position.

Taking the formal limit of the � � Gamma(a; b) prior at a = b = 0

provides the traditional reference prior p(�) / �

�1

:

Combing these components produces the standard non-informative/reference

prior p(�; �; �) / �

�1

: Then Bayes' theorem leads to the reference posterior

p(�; �; �jY ) / p(�; �; �)p(Y j�; �; �) / �

n=2�1

exp(��Q(�; �)=2);

over real-valued � and � and � > 0: This is a joint density for the three quanti-

ties, and reference inference follows by exploring and summarising its properties.

Notice that the posterior is almost the normalised likelihood function { the only

di�erence is in the prior term �

�1

: We quote key features of this reference pos-

terior in the following sections.

1.2.2 Marginal Reference Posterior for �

The marginal posterior for � is available by integrating (�; �); i.e.,

p(�jY ) =

Z

p(�; �; �jY )d�d�

where the range of integration is �1 < �; � < 1: It can be shown that this

yields the simple form

p(�jY ) / �

a�1

expf�b�g

where a = (n�2)=2 and b =

P

n

i=1

�̂

2

i

=2: As a result, the posterior for � is simply

Gamma(a; b) with these values of (a; b): In particular, the posterior mean is

E(�jY ) = 1=s

2
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where

s

2

=

n

X

i=1

�̂

2

i

=(n� 2):

Since E(�jY ) is a point estimate of � = 1=�

2

; then s

2

is a corresponding point

estimate of �

2

: It is referred to as the residual variance estimate, as it is a sample

variance computed from the �tted residuals �̂

i

: Note that, unlike the MLE �̂

2

;

the estimate s

2

has a divisor n � 2: The common-sense interpretation of this

is that the e�ective number of observations is the actual total n reduced by

the number of �tted parameters, here just two. The term n � 2 is called the

residual degrees of freedom, reecting this adjustment from n; the initial degrees

of freedom. One implication is that s

2

> �̂

2

; reecting a more conservative

estimate of variance after accounting for the estimation of the two parameters.

1.2.3 Marginal Reference Posterior for (�; �)

The marginal posterior for (�; �) is obtained as

p(�; �jY ) =

Z

p(�; �; �jY )d�

and turns out to be a bivariate T distribution. Of key practical relevance are

the implied univariate margins for posterior for � and linear functions of (�; �)

alone, and these are all univariate T distributions (see Appendix for details of

T distributions). Speci�c univariate margins are as follows.

� De�ne v

2

�

= 1=S

xx

: The univariate posterior for � has a density function

p(�jY ) / f(n� 2) + (� �

^

�)

2

=(s

2

v

2

�

)g

�(n�1)=2

;

and this is the density of a T distribution with n� 2 degrees of freedom,

mode

^

� and scale sv

�

: By way of notation we have

(�jY ) � T

n�2

(

^

�; s

2

v

2

�

):

As long as n > 4; it is also true that E(�jY ) =

^

� and V (�jY ) = cs

2

v

2

�

with c = (n� 2)=(n� 4): The posterior is symmetric and normal shaped

about the mode, though has heavier tails than a normal posterior. We

can write

� =

^

� + (sv

�

)t and t = (� �

^

�)=(sv

�

)

where the random quantity t � T

n�2

(0; 1): Posterior probabilities and

intervals for � follow from those of the Student T distribution: if t

p

is the

100p% quantile of t; then that for � is simply

^

� + (sv

�

)t

p

: The term sv

�

is called the posterior standard error of the � coe�cient.

For large degrees of freedom, the Student T distribution approaches the

standard normal, in which case we have the approximation t � N(0; 1)

and so

(�jY ) � N(

^

�; s

2

v

2

�

):
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Otherwise, we can view the distribution informally as \like the normal but

with a little bit of additional uncertainty."

� The univariate margin for � is similarly a T distribution with n�2 degrees

of freedom, mode �̂ and scale sv

�

where v

2

�

= n

�1

+ �x

2

=S

xx

; i.e.,

(�jY ) � T

n�2

(�̂; s

2

v

2

�

):

� Under p(�; �jY ) the two parameters are generally correlated. Assuming

n > 4 so that second moments of the T distribution exist, the posterior

covariance is s

2

c

�;�

(n� 2)=(n� 4) where c

�;�

= ��x=S

xx

: Note that (n�

2)=(n � 4) � 1 when n is large, when the posterior is approximately

normal; in that case, the posterior covariance is just the term s

2

c

�;�

above.

Note also that the covariance, hence the correlation, is zero if and only if

�x = 0: This correlation is relevant when considering posterior inferences

and predictions involving linear functions of the two parameters, as now

follows.

1.2.4 Intervals for � and Signi�cance of the Regression

The standard T test of the signi�cance of the regression �t can be understood as

an assessment of the support for the value � = 0 under the marginal posterior

distribution. Note that, if the assumption of a linear regression model is really

appropriate, then � = 0 would imply no relationship between the x and y

variables, whereas large values of j�j imply a strong relationship.

Under the symmetric posterior distribution (�jY ) � T

n�2

(

^

�; s

2

v

2

�

); HPD in-

tervals coincide with equal-tails intervals. Speci�cally, the 100(1�p)% posterior

interval is

^

� � (sv

�

)t

p=2

for any probability p and where t

p=2

is the 100(p=2)% quantile of T

n�2

(0; 1): For

example, p = 0:05 means that t

0:025

is the (lower) 2.5% point of the standard

T distribution, and the above interval is a 95% (equal tails, HPD) interval for

�: If the value � = 0 lies outside this interval, then we are assured that the

regression is signi�cant at (at least) the 95% level; that is, � = 0 is among the

5% least likely values of the parameter.

The standard p�value for the test of � = 0 can be interpreted as the posterior

probability of � values that have lower posterior density than � = 0: To do

this we need to �nd the probability outside the HPD interval de�ned with

one end-point at � = 0: From the form of the posterior density function, it

easily follows (as detailed in the Appendix) that this exclude all � values such

that jtj > j

^

�=sv

�

j where t = (� �

^

�)=sv

�

: The resulting \tail-area" p�value is

therefore simply

p� value = 2Pr(t > j

^

�=sv

�

j)

where t � T

n�2

(0; 1): The observed quantity

^

�=sv

�

here is called the standard-

ised T test statistic { it is simply the size of the estimated coe�cent relative to
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its standard error. It is tempting to refer to the p�value as the \probability of

� = 0" although it is obviously not quite that; it is, however, a standard measure

of the signi�cance of the �t of the model, with a low p�value commensurate

with a signi�cant �t.

1.2.5 F Tests, ANOVA and Deviances

It is traditional to summarise the statistical signi�cance of the regression �t with

a summary F test and the associated analysis of deviance, historically called

the analysis of variance, or ANOVA. This adds nothing new methodologically;

rather, the F test and anova presentation is simply another way of summarising

the goodness of �t in terms of R

2

and the p�value based on the T test for � = 0;

as discussed in the previous section. One reason for restating the conclusions in

these di�erent terms is simply historical precendent. A second, more important

reason is that the extension of signi�cance assessment to multiple regression

models { models with more than one predictor variable { cannot be done with

T tests alone, and inherently involves ANOVA ideas. Hence it is useful to

explain the connection in this simplest of cases.

Begin by noting that the p�value from the T test of the signi�cance of the

regression is equivalent to

p� value = Pr(F > (

^

�=sv

�

)

2

)

where F = t

2

; a random variable obtained as the square of t � T

n�2

(0; 1): The

name of the distribution of F is the F distribution with (1; n � 2) degrees of

freedom; we write F � F

1;n�2

: Such distributions are well known, tabulated

and available in computer software. Hence we could use the upper tail-area of

the F

1;n�2

to compute the p�value, as an alternative to the T

n�2

(0; 1):

Write

f

obs

= (

^

�=sv

�

)

2

=

^

�

2

=v

2

�

s

2

:

It is easily shown (see exercises) that the numerator term in f

obs

reduces to

^

�

2

v

2

�

= S

yy

� (n� 2)s

2

where (n� 2)s

2

=

P

n

i=1

(y

i

� �̂�

^

�x

i

)

2

is the residual sum of squares from the

model �t. As a result, it is trivial to compute

f

obs

= (S

yy

� (n� 2)s

2

)=s

2

and the implied p�value.

The above expression is intuitively reasonable. The term S

yy

� (n� 2)s

2

is

called the �tted sum of squares or the variation explained by the regression of

y on x: This reects the fact that it is the di�erence between the total variation

in the response data (S

yy

) and the residual variation remaining after the model

has been �tted. If the variation explained is large, then f

obs

will be large and
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the p�value small; just how large the reduction in variation due to the model

must be is relative to the scale of the data, so that the variation explained is

assessed relative to s

2

as is clear in the formula for f

obs

:

In terms of the quadratic notation Q(�; �); recall that S

yy

= Q(�y; 0) and the

residual sum of squares is (n�2)s

2

= Q(�̂;

^

�): So, in this notation, the explained

variation is simplyQ(�y; 0)�Q(�̂;

^

�): In some areas of modern regression analysis,

these quadratic, sums of squares measures are referred to as deviances. Thus

Q(�y; 0) is the total deviance, and Q(�̂;

^

�) is the residual deviance from the �tted

model; the di�erence is the deviance explained by the regression on x; or the

reduction in deviance due to the model. ANOVA, the analysis of variance, is

simply a name for the representation of total variability in the response data

using the above components. In modern times the term analysis of deviance is

more apt, as it generalises to non-normal and non-linear regression models. The

summary is simple: Total deviance = Deviance explained + Residual deviance,

and the F test measures the signi�cance of the model �t by assessing just how

large the \deviance explained" here is.

1.2.6 Honest Prediction

Consider predicting a new case y

n+1

at a further, or future, design point x

n+1

:

Formally, this requires the evaluation of the posterior predictive distribution

p(y

n+1

jY ); i.e., simply the distribution for the new value conditional on the

data observed so far (as above, the x

i

values are implicit and ignored in the

notation). It can be shown that this leads to a T distribution, and we denote

this by

(y

n+1

jY ) � T

n�2

(ŷ; s

2

v

2

y

)

where

� ŷ = �̂+

^

�x

n+1

; just the �tted line at x

n+1

; and

� v

2

y

= 1 + w

2

with

w

2

= v

2

�

+ x

2

n+1

v

2

�

+ 2x

n+1

c

�;�

;

and where c

�;�

= ��x=S

xx

was given above in the posterior covariance

between � and �:

It is easy to motivate this by considering the model directly, that is

y

n+1

= �+ �x

n+1

+ �

n+1

where �

n+1

is the deviation from the line for the new case and so is independent

of past data. Taking expectations across this equation gives E(y

n+1

jY ) = ŷ;

using linearity of expectations. The scale factor sv

y

is similarly computed; note

that the posterior correlation between � and � enters into its computation.

Note the following:
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� For large n; the predictive distribution is close to normal, in which case

(y

n+1

jY ) � N(ŷ; s

2

v

2

y

):

� Since v

2

y

= 1 + w

2

we have s

2

v

2

y

= s

2

+ s

2

w

2

: Here the �rst s

2

is the

estimate of the variance �

2

of �

n+1

; whereas the term s

2

w

2

measures the

uncertainty about the line �+ �x

n+1

at the new design point.

� With very large data sets the posterior for (�; �) will be quite precise, and

w will be small, in which case the posterior is almost N(ŷ; s

2

): Otherwise,

the predictions using the above results will be \honest" in the sense that

the additional term s

2

w

2

appropriately reects the additional uncertainty

in predicting due to uncertainty about the regression line parameters.

� It can be shown that the above formula for w

2

can be reduced to

w

2

= n

�1

+ (x

n+1

� �x)

2

=S

xx

:

As a result, w

2

will be small when x

n+1

is close to �x; but grows larger

for larger values of jx

n+1

� �xj: This means that the spread of the pre-

dictive distribution is greater for new design points that are further away

from the past design points; in this sense, predictions also appropriately

reect increased uncertainty in extrapolating outside the range of past

experience. Nevertheless, extrapolation must always be cautioned, unless

substantive theory exists to indicate the validity of extending the straight

line regression assumption into regions where no data are available.

In practice, computer programs work with matrix formulations of linear

models so that the explicit details of the calculations above are never needed

for actual numerical work. They are important, however, for understanding and

interpretation.
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2 Sampling Theoretic Inference

The standard sampling-theoretic inference framework leads to essentially the

same methods { the same point estimates of (�; �; �

2

); the same intervals and

tests { in terms of numerical values, although, of course, their interpretations

and rationale are quite di�erent to those in the Bayesian framework. The sam-

pling theory results are summarised here for comparison.

Under the assumption that the straight line model generates the data, con-

sider the statistics (�̂;

^

�; �̂

2

) as functions of the random quantities Y prior to

their being observed. These have a joint sampling distribution p(�̂;

^

�; �̂

2

j�; �; �

2

)

that is well-known (e.g., De Groot, chapter 10). Remember that this is the

repeat-sampling distribution of the estimators based on the model assuming

the parameter �xed at their \true" values. This trivariate sampling distribution

has the following features.

� The estimators are unbiased; that is, E(�̂j�) = �; E(

^

�j�) = � and

E(�̂

2

j�

2

) = �

2

: They are also consistent, in that they converge (in prob-

ability) to their respective parameters as n tends to in�nity.

� The statistic (�̂ � �)=sv

�

is distributed as T

n�2

(0; 1): Note that this de-

scribes sampling variability in both �̂ in the numerator and s in the de-

nominator. As a result, con�dence intervals for � have the form

�̂� (sv

�

)t

p=2

for any probability p and where t

p=2

is the 100(p=2)% quantile of T

n�2

(0; 1):

� The statistic (

^

� � �)=sv

�

is also distributed as T

n�2

(0; 1): Note that this

describes sampling variability in both

^

� in the numerator and s in the

denominator. As a result, con�dence intervals for � have the form

^

� � (sv

�

)t

p=2

for any probability p and where t

p=2

is the 100(p=2)% quantile of T

n�2

(0; 1):

� The statistic s

2

has a sampling distribution that depends only on �

2

; and

is given by (s

2

j�

2

) � Gamma((n � 2)=2; (n � 2)=2�

2

): Equivalently, the

quantity s

2

(n � 2)=�

2

is distributed as Gamma((n � 2)=2; 1=2) which is

the chi-squared distribution with n� 2 degrees of freedom.

Note that the point estimates and con�dence intervals for the regression

parameters coincide numerically with those in the reference Bayesian analysis,

and that the same point estimate of �

2

is generated too. These numerical

equivalences extend to predictions.

On the issue of testing the signi�cance of the regression model �t, the

sampling-theoretic interpretation of the p�value may be based on the follow-

ing reasoning. Condition on the hypothesis that � = 0; so that the sampling

distribution theory above implies

^

�=sv

�

� T

n�2

(0; 1): Write t =

^

�=sv

�

: Then
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large values of the statistic jtj are rare if the hypothesis that � = 0 is actually

true, and just how rare can be measured by probabilities with respect to this

sampling distribution. Write t

obs

for the observed value of

^

�=sv

�

in this data

set. Then the probability of observing a future, hypothetical data set Y that

gives rise to values of t that is at least as extreme as t

obs

is simply

Pr(jtj > jt

obs

j) = 2Pr(t > jt

obs

j);

and this is easily computed from the standard T

n�2

(0; 1) distribution of t: Notice

that, though the conceptual basis for this calculation is radically di�erent from

the conditional Bayesian approach, the numerical results are again the same.

The above is the standard sampling theory, or frequentist, de�nition of the

observed signi�cance level or p�value of the test of the hypothesis that � = 0:

It coincides with the Bayesian p�value based on tail areas under the posterior

density for �: The numerical correspondence of the associated F test follows

immediately.

It turns out that this test has other optimality properties from a sampling

theoretic viewpoint. In particular, it is a likelihood ratio test of the hypothesis

� = 0 compared to all other values of �; and a uniformly most powerful test in

addition (De Groot, chapter 10).
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3 Multiple Linear Regression Models:

Summary

The course slides provide coverage of the multiple linear regression model, no-

tation, mathematical structure, examples, and theory. This section is a sup-

plement on the basic theoretical results (no proofs) related to the reference

posterior distribution and its uses.

The model is

y

i

= �

0

+ �

1

x

i1

+ : : : �

p

x

ip

+ �

i

for observations i = 1; : : : ; n: In vector/matrix notation we have

y

i

= x

0

i

� + �

i

and

y = X� + �

where:

� the n� 1 response vector y has elements y

i

;

� the n� k design matrix X has rows x

0

i

where

x

0

i

= (1; x

i1

; : : : ; x

ip

)

and, of course, k = p+ 1;

� the k � 1 regression parameter vector � has elements �

i

:

� the n� 1 error (or deviation) vector � has elements �

i

:

In detail,

y =

0

B

B

B

@

y

1

y

2

.

.

.

y

n

1

C

C

C

A

; � =

0

B

B

B

@

�

1

�

2

.

.

.

�

n

1

C

C

C

A

X =

0

B

B

B

@

x

0

1

x

0

2

.

.

.

x

0

n

1

C

C

C

A

=

0

B

B

B

@

1 x

11

x

12

� � � x

1p

1 x

21

x

22

� � � x

2p

.

.

.

.

.

.

.

.

. � � �

.

.

.

1 x

n1

x

n2

� � � x

np

1

C

C

C

A

and

� =

0

B

B

B

@

�

0

�

1

.

.

.

�

p

1

C

C

C

A

:

Row i of X is just x

0

i

; containing the values of all predictor variables (in order)

for observation i: Column j of X contains the n values of predictor variable j;

except for when j = 1 when it is just a column with all entries 1, corresponding

to the intercept term of the model.
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4 Multiple Linear Regression Models:

Reference Posterior Distribution

The reference posterior p(�jY ) is a multivariate T distribution. The parameter

vector � contains k parameters, so the posterior is a joint distribution for these

k parameters, or a k�variate distribution. The multivariate T distribution has

n� k degrees of freedom, and we write it as

(�jY ) � T

n�k

(

^

�; s

2

V)

with the following ingredients:

� The dimension k is implicit, and not made explicit in the notation;

� V is the k � k matrix de�ned by

V = (X

0

X)

�1

;

and arises in the formula for

�

^

�; the LSE of �; de�ned by

^

� = VX

0

y;

� s

2

is the residual estimate of the variance �

2

; given by

s

2

= Q(

^

�)=(n� k)

where

Q(

^

�) =

n

X

i=1

�̂

2

i

is the residual sum of squares of the model �t, or the residual deviance,

based on �tted residuals

�̂

i

= y

i

� x

0

i

^

�

for each i: As in the straight line model, s

2

is the usual estimate of �

2

;

computed as a sample variance in which the sample values are the �t-

ted residuals, and the denominator n � k corrects the sample size n by

subtracting the number of parameters estimated in �:

4.1 Univariate marginal posteriors

One of the key properties of the joint posterior distribution above is that the

implied univariate marginal posterior for any element �

i

of � is a Student T

distribution. Speci�cally, for i = 1; : : : ; k;

(�

i

jY ) � T

n�k

(

^

�

i

; s

2

v

2

i

)

where

^

�

i

is the corresponding estimate from

^

� and v

2

i

is the corresponding

diagonal element of V; or v

2

i

= (V)

ii

:

Inference on any one parameter individually involves summarising this T

distribution, in the usual ways.
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4.2 Other marginal posteriors

A second key property of the joint posterior distribution above is that the im-

plied multivariate marginal posterior for any subset of r elements is also a mul-

tivariate T distribution. This is of most interest in connection with developing

measures of importance of subsets of predictor variables in explaining variation

observed in the response variable. We return to this below in discussing subset

F tests of such questions.

4.3 Honest prediction

A further key implication of the model and its analysis is that predictive distri-

butions for new/future response variables are also T distributions. Speci�cally,

consider a future predictor vector x

n+1

: The posterior predictive distribution

for the associated future response outcome

y

n+1

= x

0

n+1

� + �

n+1

is given by

(y

n+1

jY ) � T

n�k

(ŷ

n+1

; s

2

v

2

y

)

where

� the point prediction is simply

ŷ

n+1

= x

0

n+1

^

� =

^

�

0

+

^

�

1

x

n+1;1

+ : : :+

^

�

p

x

n+1;p

;

or just the value of the �tted regression function at the new design point;

� v

2

y

= 1 + w

2

where w

2

= x

0

n+1

Vx

n+1

:

The term sv

y

is called the predictive standard error. Note that w, and hence

v

y

; depend on x

n+1

(though the notation does not make this explicit), and this

dependence is important in reecting di�ering degrees of uncertainty about y

n+1

at di�erent design points. In particular, as in the simple straight line regression

model, predictions at new points x

n+1

that are far from the region of previous

experience will have higher standard errors since w; and hence v

y

; will be larger.

Further, note that the term w appears to reect the estimation uncertainty {

the uncertainty due to lack of precise knowledge of �: With large sample sizes,

the posterior for � will be very concentrated about its mean of

^

�; V will have

small elements, and hence w will be small. In such cases, two e�ects arise: �rst,

s

y

� 1 so that the predictive standard error will be approximately s

2

; secondly,

the T distribution, with a very large degrees of freedom, will be approximately

normal. In such cases, therefore, we may use the simpler approximate predictive

distribution

(y

n+1

jY ) � N(ŷ

n+1

; s

2

):
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5 Assessing subsets of predictors

5.1 Posterior assessment of parameters

Standard subset F tests provide numerical measures of the contributions of

subsets of predictor variables to the overall �t of the model. Consider a speci�c

subset of r < p predictors to be assessed. Suppose these predictors are those

numbered j

1

; : : : ; j

r

; so that the corresponding regression parameter are

 =

0

B

@

�

j

1

.

.

.

�

j

r

1

C

A

:

Under the reference posterior distribution, the r�vector parameter  has a

marginal multivariate T

n�k

distribution. One way to assess how important the

r predictors in question are is to assess how much support this posterior gives

to values near  = 0: The reasoning is parallel to that used in univariate cases:

if the point  = 0 is unsupported by the data, and so well out \in the tails" of

the posterior, then the corresponding predictors play a meaningful role in the

model �t. If, on the other hand, the point  = 0 is close to the mean of the

posterior and so is a likely value, the predictors have less relevance. Notice that

this is explored with no reference to the other predictors { it is therefore to be

understood that this assessment of  is conditional upon the other covariates

being in the model.

To formally assess the support for  = 0 we

� identify all values of  that have lower posterior density than  = 0; and

then

� �nd the posterior probability of those values to deliver a p�value to assess

just how extreme  = 0 is.

The formal interpretation of such a p�value is that it is the posterior prob-

ability on  values that lie outside the highest posterior density region de�ned

by  = 0; the common-sense terminology is that the p�value is the probability

on values of  less well-supported by the data than  = 0: A small p�value

indicates that  is most probably di�erent to 0 and so indicates that the r

predictors in question contribute signi�cantly to the model �t.

Standard theory tells us that the resulting p�value may be easily computed

as a tail-area under a univariate F distribution. The details and derivation are

not given here, but the formula of the threshold for the F distribution is both

easy to remember and important to interpret. The result is that

p� value = Pr(F > f

obs

);

where the random variable F has an F distribution on r and n � k degrees of

freedom, or F � F

r;n�k

; and where f

obs

is the threshold value f

obs

computed
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from the posterior. The formula for f

obs

is discussed in the following subsection.

Note that the p�value is trivially computed from software packages with cumu-

lative distribution functions of F distributions { it is just 1� P (f

obs

) where P

here stands for the cdf of F

r;n�k

:

5.2 F test statistics

Call the model above Model A. In Model A, we have p predictor variables and

are interested in whether or not a speci�c subset of r of them are really relevant

in terms of statistical measures of �t. Consider a di�erent linear model, Model

B, that is just Model A with the r predictor variables in question removed. We

can trivially �t Model B as well, compute the usual posterior distributions and

numerical summaries, and use these to make comparisons with Model A. Model

A has more predictor variables than Model B: Model A has p predictors, but

Model B has only p � r: In addition, we say that Model B is nested within

Model A, since it arises as a special case of Model A when  = 0: If the r

predictors in question are really not relevant in describing observed variations

in the response data, then the two models will produce similar �ts. If, on the

other hand, these speci�c predictors are really related to the response, Model

A will produce a di�erent and better �t, better in the sense of explaining more

observed variation. To this end, we compare the residual sums of squares, or

deviances, from the two models.

Write Q

A

and Q

B

for the residual deviances in Models A and B, respectively.

We can interpretQ

B

�Q

A

as the decrease in deviance in moving from the simpler

Model B to the more elaborate Model A. A large di�erence is indicative of a

signi�cantly improved �t, suggesting the r predictors are relevant. To measure

how large the decrease in deviance is, we �rst note that the reduced deviance

under Model A is achieved at the cost of r extra parameters, so that we might

better consider the change in deviance per parameter, or (Q

B

�Q

A

)=r: Second,

deviances are measured on a scale that is the square of the response, or that

of �

2

and its estimates; to standardise to a dimensional measure we divide by

the best estimate of �

2

available, namely s

2

A

; the residual estimate of variance

under the larger Model A. This leads us to the standardised, per parameter

\reduction in deviance" measure (Q

B

�Q

A

)=rs

2

A

: as a natural summary of just

how much the r predictors in question improve model �t in the context of the

other predictors already in Model B.

The F distribution theory mentioned in the previous section identi�es just

this standardised deviance measure as the critical threshold value, i.e.,

f

obs

= (Q

B

�Q

A

)=rs

2

A

or

f

obs

=

difference in deviance=difference in number of parameters

residual estimate of variance

where the \di�erences" in deviances and number of parameters compare elab-

orating the data description from Model B to Model A, \residual estimate of
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variance" is that in the more elaborate Model A. The resulting p�value simply

converts this common-sense measure of \di�erence" between the two models to

a probability scale.

Finally, note the special case when we consider r = p and assess all pre-

dictor variables. In this case, the F test is a test of overall regression �t, with

the simpler \baseline" Model B being the random sample model with no pre-

dictors. Many computer packages routinely generate the f

obs

threshold, and its

corresponding p�value under the F

p;n�p�1

distribution, as a summary of overall

model �t.

5.3 Cautionary note

As usual, it is important to be aware that p�values will tend to be smaller for

larger sample sizes, the F test being more \powerful" in identifying increasingly

small deviations of  from 0 when n is very large. Hence it is important to

be aware that, if dealing with very large samples, most subsets of potential

predictors may be found to be statistically signi�cant even though their inclu-

sion in a model may lead to only minor changes in inferences and predictions.

Generally, and again as in all statistical models, choice of candidate predictor

variables should be based as much as possible on underlying scienti�c relevance

and validity, and on empirical performance in out-of-sample predictions.
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Appendix: T distributions

A real-valued random quantity t has a standard Student T distribution with

k > 0 degrees of freedom if the density function is

p(t) / fk + t

2

g

�(k+1)=2

with normalising constant a = k

k=2

�((k + 1)=2)=f

p

��(k=2)g: We write t �

T

k

(0; 1): The density is symmetric about zero with a shape similar to the normal

density curve. For high values of k; say exceeding 20, the density is very close to

normal. For lower values of k; the density is heavier-tailed than normal, giving

higher probability to more extreme values. If k > 1 the mean exists and is

E(t) = 0: If k > 2 the variance exists and is V (t) = k=(k � 2); for large k; the

variance approaches 1 as the density approaches the standard normal.

For any constants m and v; with v > 0; de�ne the random quantity x =

m + vt: Then x has a T distribution with location m (the mode of p(t) and

the mean if k > 1); and scale v: We write x � T

k

(m; v

2

): The variance is

V (x) = v

2

k=(k � 2); so that v

2

is the variance for large k: The density is, by

transformation,

p(x) / fk + (x�m)

2

=v

2

g

�(k+1)=2

:

For large k; the distribution of x is approximately N(m; v

2

): Otherwise, we

can view the distribution informally as \N(m; v

2

) with a little bit of additional

uncertainty."

Quantiles of the Student T distributions are tabulated and available in com-

puter software for any value of k: Suppose that t

p

is the 100p% quantile of the

distribution, i.e., such that Pr(t � t

p

) = p: Then the corresponding quantile of

x is simply m+ vt

p

:

Appendix: T test in straight line regression

Under the reference posterior (�jY ) � T

n�2

(

^

�; s

2

v

2

�

) the values of � having

lower density than � = 0 simply satisfy

p(�jY ) < p(0jY )

where p(�jY ) = cfn� 2 + (� �

^

�)

2

=s

2

v

2

�

g

�(n�1)=2

is the posterior density. The

value at zero is just

p(0jY ) = cfn� 2 + (0�

^

�)

2

=s

2

v

2

�

g

�(n�1)=2

= cfn� 2 + T

2

g

�(n�1)=2

where T =

^

�=sv

�

is the standardised T statistic. Hence p(�jY ) < p(0jY ) if any

only if

fn� 2 + (� �

^

�)

2

=s

2

v

2

�

g > fn� 2 + T

2

g

which reduces to

t

2

> T

2

or jtj > jT j
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where t = (� �

^

�)=sv

�

is a random quantity with the standard T

n�2

(0; 1) dis-

tribution.

As a result, the posterior probability of � values having lower density than

� = 0 is just Pr(jtj > jT j) = 2Pr(t > jT j) since the T standard distribution is

symmetric about zero. This is the standard p�value for the test of � = 0:

6 Exercises

1. Verify the formul� for the LSEs (�̂;

^

�) in the straight line regression model.

2. In the straight line regression model, consider the the residual sum of

squares Q(�̂;

^

�) =

P

n

i=1

(y

i

� �̂�

^

�x

i

)

2

: By substituting the identity �̂ =

�y �

^

��x show that Q(�̂;

^

�) = S

yy

�

^

�

2

=v

2

�

: Deduce that

^

�

2

=v

2

�

is the �tted

sum of squares, or deviance explained, by the regression model.

3.

4.

5.
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