INTRODUCING LINEAR REGRESSION MODELS Straight line regression - Response or Dependent variable y - Predictor or Independent variable x - Measurement error model: repeat values i = 1, ..., n, $$y_i = \alpha + \beta x_i + \epsilon_i$$ Typically/initially: $\epsilon \sim N(0, \sigma^2)$ ϵ_i : independent errors (sampling, measurement, lack of fit) - Typically/initially: $\epsilon \sim I$ V(0, σ - Analysis and inference: - Estimate parameters $(\alpha, \beta, \sigma^2)$ - Assess model fit adequate? good? if inadequate, how? - Explore implications: $\beta, \beta x$ - Predict new ("future") responses at new $x_{n+1},...$ #### BIG PICTURE: - Understanding variability in y as a function of x - Exploring p(y|x) for different x values - One aspect: Regression function E(y|x) as x varies - Special case: normal, linear in mean - Other cases: binomial y, success prob depends on x - e.g., Dose-response models - How much variability does x explain? - Normal models: Variance measures "variability" - Observational studies versus Designed studies - "Random" x versus "Controlled" x - Bivariate data (y_i, x_i) BUT focus on x_i fixed - "Special" status of response variable - Several or many predictor variables e.g., POLLUTION LEVELS, MERCEDES USED CAR PRICES, ABALONE SHELL FISH AGES, etc OLD FAITHFUL GEYSER TIMES, SEX BIAS IN SALARIES, UNIVERSITY TUITION LEVELS, EEG DATA, ## SAMPLE SUMMARY STATISTICS - Sample means \bar{x}, \bar{y} - Sample variances s_x^2, s_y^2 $$s_y^2 = S_{yy}/(n-1), s_x^2 = S_{xx}/(n-1)$$... and sample COVARIANCE $$s_{xy} = S_{xy}/(n-1)$$ where $S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 - \text{``Total Variation in response''}$ • $$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$ $$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$ "Sums of squares" S_{xx}, S_{yy}, S_{xy} - measures of total variation and covariation Standardised scale for covariance: ## SAMPLE CORRELATION: $$r = \frac{s_{xy}}{s_x s_y}$$ -1 < r < 1, measure of dependence S-Plus: var(y), var(x), cor(y,x) # SQUARED ERRORS AND "FIT" OF CHOSEN LINES Measurement error version of model: $y_i = \alpha + \beta x_i + \epsilon_i$ For any chosen α, β , $$Q(\alpha, \beta) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$ measures "fit" of chosen line $\alpha + \beta x$ to response data ### LEAST SQUARES LINE: - Choose $\hat{\alpha}, \hat{\beta}$ to minimise $Q(\alpha, \beta)$ - Least squares estimates (LSE) $\hat{\alpha}, \hat{\beta}$ - (Venerable/ad-hoc) "principal" of least squares estimation ## LEAST SQUARES ESTIMATES FACIS: $$\hat{eta} = rac{s_{xy}}{s_x^2}, \quad \hat{lpha} = ar{y} - \hat{eta}ar{x}$$ $$\hat{\beta} = r \left(\frac{s_y}{s_x} \right)$$ $\hat{\beta}$ is correlation coefficient r, corrected for relative scales of y:x so that the units of the "fitted values" $\hat{\beta}x$ are on scale of y ### R^2 measure of model fit: Simplest model: $\beta = \hat{\beta} = 0$ so y_i are a normal random sample $$\hat{\alpha} = \bar{y}, \qquad Q(\bar{y}, 0) = S_{yy} = \text{total sum of squares}$$ Any other model fit: Residual Sum of Squares $Q(\hat{\alpha}, \hat{\beta})$ DEFINE: $$R^2 = 1 - Q(\hat{\alpha}, \hat{\beta})/S_{yy}$$ - proportion of variation "explained" by model - FACT: $$R^2 = r^2$$ (algebra ...) - "Multiple regression" generalisation later - Higher %variation explained is better: Higher correlation S-Plus: linear model fitting function: lm(x), See examples ## **EXAMINING MODEL FIT** - Fitted values $\hat{y}_i = \hat{\alpha} + \beta x_i$ - Residuals $\hat{\epsilon}_i = y_i \hat{y}_i$... e - Residual sum of squares $Q(\hat{\alpha}, \hat{\beta}) = \sum_{i=1}^{n} \hat{\epsilon}_i^2$... estimates of ϵ_i - measures remaining/residual variation in response data - Residual sample variance: $$s^2 = \sum_{i=1}^{n} \hat{\epsilon}_i^2 / (n-2)$$ s^2 is a point estimate of σ^2 from fitted model n.b., n-2 degrees of freedom, not n-1 – "lose" one degree of freedom for each model parameter α, β – # THEORY FOR INFERENCE: REFERENCE POSTERIOR posterior for $(\alpha, \beta, \sigma^2)$ Anticipating later theory, some key aspects of the REFERENCE • (marginal) posterior for β is T distribution with n-2 d.o.f. $$T_{n-2}(\hat{\beta}, s^2 v_{\beta}^2)$$ where $v_{\beta}^2 = 1/S_{xx}$ s^2 is the posterior estimate of σ^2 – residual variance Key to assessing significance of regression fit and measuring the "explanatory power" of chosen predictor x Intervals: $$\hat{eta} \pm (sv_{eta})t_{p/2}$$ where $t_{p/2}$ is 100(p/2)% quantile of standard T_{n-2} # "TESTING" SIGNIFICANCE OF THE REGRESSION FIT Question: How probable is $\beta = 0$ under the posterior? #### Answer: - Compute posterior probability on β values with lower posterior density than $\beta = 0$ - "Measures" probability of β "less likely" than $\beta = 0$ - Informal "test" of significance Probability in tails = significance level = (Bayesian) p-value - Symmetric posterior density: double one tail area - S-Plus: 2*(1-pt(abs(T), n-2)) where - T= $\beta/sv_{\beta}-standardised T Statistic$ #### Classical testing terminology: "The regression on x is significant at the 5% level (or 1%, etc) if the p-value is smaller than 0.05 (or 0.01, etc)" # F TESTS, ANOVA AND DEVIANCES F test of regression fit: Theory: If $$t \sim T_k(0,1)$$ then $F = t^2 \sim F_{1,n-2}$ - p-value = $Pr(F \ge f_{obs})$ - $f_{obs} = \hat{\beta}^2/s^2 v_{\beta}^2$ - T and F tests are equivalent: same p-value - S-Plus output: quotes T values, p-values in coefficient table and F test result # F TESTS, ANOVA AND DEVIANCES Deviances = Sums of squares: Deviance decomposition ... $$S_{yy} = Q(\hat{\alpha}, \hat{\beta}) + \hat{\beta}^2/v_{\beta}^2$$ - Total deviance $S_{yy} = \sum_{i=1}^{n} (y_i \bar{y})^2$ - Residual deviance $Q(\hat{\alpha}, \hat{\beta}) = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ - Fitted or explained deviance: $\hat{\beta}^2/v_{\beta}^2$ - here equal to $s^2 f_{obs}$ - - Large deviance explained \equiv large $F \equiv$ significant regression - ANOVA: analysis of variance (deviance) # HONEST PREDICTION FROM FITTED MODEL Question: What is the posterior predictive distribution for a new $$y_{n+1} = \alpha + \beta x_{n+1} + \epsilon_{n+1}$$ Answer: Also a Student t distribution with n-2 d.o.f. $$y_{n+1} \sim T_{n-2}(\hat{y}, s^2 v_y^2)$$ - Mean is $\hat{y} = \hat{\alpha} + \hat{\beta}x_{n+1}$ - Spread: $s^2 v_y^2 = s^2 + s^2 w^2$... - $-s^2w^2$ posterior uncertainty about $\alpha + \beta x_{n+1}$ depends on x_{n+1} , spread is higher for x_{n+1} far from \bar{x} - additional variability $+s^2$ due to ϵ_{n+1} , estimating σ^2 by s^2 Form of predictive distribution anticipates theory later under Multiple linear regression – S-Plus function: predict() handles all the details Examples in S-Plus code: pollution data, mercedes used prices, etc Model fit assessment/implications: Explore predictive distributions Residual analysis: Graphical exploration of fitted residuals $\hat{\epsilon}_i$ - Standardise: $r_i = \hat{\epsilon}_i/s$ - Approximately standard normal? qqplot, etc - RESIDUALS = RESPONSE MINUS FIT: Treat ϵ_i as "new data" – look at structure, other predictors #### Other predictors?