INTRODUCING LINEAR REGRESSION MODELS
Straight line regression

Response or Dependent variable y

Predictor or Independent variable x

Measurement error model: repeat valuest=1,...,n,

€

Yi = o+ Pzi + €

: independent errors (sampling, measurement, lack of fit)

Typically /initially: € ~ N(0, 0?)

Analysis and inference:

Estimate parameters («, 3,0?)
Assess model fit — adequate? good? if inadequate, how?
Explore implications: 3, Bx

Predict new (“future”) responses at new x, 1, .




BIG PICTURE:

Understanding variability in y as a function of x
Exploring p(y|x) for different x values
One aspect: Regression function FE(y|x) as x varies

Special case: normal, linear in mean
— Other cases: binomial ¥y, success prob depends on x

— e.g., Dose-response models

How much variability does x explain?

Normal models: Variance measures “variability”

Observational studies versus Designed studies

— “Random” x versus “Controlled” x




e Bivariate data (y;,x;) BUT focus on z; fixed
e “Special” status of response variable

e Several or many predictor variables

e.g., POLLUTION LEVELS, MERCEDES USED CAR PRICES,
OLD FAITHFUL GEYSER TIMES, SEX BIAS IN SALARIES,
UNIVERSITY TUITION LEVELS, EEG DATA,

ABALONE SHELL FISH AGES, .... etc




SAMPLE SUMMARY STATISTICS

e Sample means T,y

w%w

e Sample variances sz, s,

mmHm@@\gICu s2 = Sua/(n—1)
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e ... and sample COVARIANCE

Szpy = %a@\AS —1)
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“Sums of squares” Sgz, Syy, Sy
— measures of total variation and covariation

Standardised scale for covariance:

SAMPLE CORRELATION:

S Sy

T =

—1 < r < 1, measure of dependence

S-Plus: var(y), var(x), cor(y,x)




SQUARED ERRORS AND “FIT” OF CHOSEN LINES
Measurement error version of model: y;, = a + fx; + ¢€;

For any chosen «, (3,

n n

Qla,B) =) & => (yi—a—Px;)’

1=1 1=1

measures “fit” of chosen line oo + Bx to response data

LEAST SQUARES LINE:
e Choose @&, 3 to minimise Q(a, B)
e Least squares estimates (LSE) &, 3

e (Venerable/ad-hoc) “principal” of least squares estimation




LEAST SQUARES ESTIMATES

FACTS:

Or

A

(3 is correlation coefficient r, corrected for relative scales of y : x

so that the units of the “fitted values” m& are on scale of y




R? measure of model fit:

AN

Simplest model: 3 = (3 =0 so y; are a normal random sample

a =17, Q(y,0) = S,, = total sum of squares

Any other model fit: Residual Sum of Squares Q(4, mv

DEFINE: R? =1 — Q(&,3)/Sy,
— proportion of variation “explained” by model —

FACT: R? = r? (algebra ...)
e “Multiple regression” generalisation later

e Higher %variation explained is better: Higher correlation

S-Plus: linear model fitting function: 1m(x), See examples




EXAMINING MODEL FIT

o Fitted values §; = & + m&@

Residuals €; = y; — 9; ... estimates of ¢;

Residual sum of squares Q(&, mv = MUwHH mw

— measures remaining/residual variation in response data —

Residual sample variance:

S

2

n

2= &/n-2)

1=1

is a point estimate of o2 from fitted model
n.b., n — 2 degrees of freedom, not n — 1

— “lose” one degree of freedom for each model parameter o, 5 —




THEORY FOR INFERENCE: REFERENCE POSTERIOR

Anticipating later theory, some key aspects of the REFERENCE
posterior for (o, 3,02)

e (marginal) posterior for 3 is T distribution with n — 2 d.o.f.
MJﬁlwAQv MNQMV
where @m =1/S.z
e s’ is the posterior estimate of 0 — residual variance

Key to assessing significance of regression fit and measuring the
“explanatory power” of chosen predictor x

Intervals:
Q + Amdmvﬁs\w
where t,/5 is 100(p/2)% quantile of standard T;,_»




“TESTING” SIGNIFICANCE OF THE REGRESSION FIT
Question: How probable is § = 0 under the posterior?

Answer:

e Compute posterior probability on (3 values with lower posterior
density than 8 =0

e “Measures” probability of 8 “less likely” than 8 =0

e Informal “test” of significance —

Probability in tails = significance level = (Bayesian) p—value
e Symmetric posterior density: double one tail area

e S-Plus: 2x(1-pt(abs(T), n-2)) where
— T=(/svs — standardised T Statistic




Classical testing terminology:

“The regression on z is significant at the 5% level (or 1%, etc) if

the p—value is smaller than 0.05 (or 0.01, etc)”

case 1, 0.02 in each tail case 2, 0.044 in each talil
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F TESTS, ANOVA AND DEVIANCES

F test of regression fit:
Theory: If t ~ T} (0,1) then F = t? ~ o

S0
e p—value = Pr(F > fops)
o fors = 3%/5%02
e ' and F' tests are equivalent: same p—value

e S-Plus output: quotes 1" values, p—values in coefficient table
and F test result




F TESTS, ANOVA AND DEVIANCES

Deviances = Sums of squares: Deviance decomposition .

m@@ — @AN«“@V T @w\dw
e Total deviance Sy, = > . (y; — y)?
e Residual deviance Q(a, mv = MUM.@HH@@. — ;)*

e Fitted or explained deviance: mw / @w

— here equal to s° f,ps —
e Large deviance explained = large F' = significant regression

e ANOVA: analysis of variance (deviance)




HONEST PREDICTION FROM FITTED MODEL
Question: What is the posterior predictive distribution for a new
case,

Ynt+1 = O + Q&:J& + €n41

Answer: Also a Student t distribution with n — 2 d.o.f.

Ynt1 ~ Tno2(g, s°v;)
e Meanis §y = & + mazi

2 _ o2 4 g22

e Spread: mm@@

— s%w? — posterior uncertainty about o + Bz, 41

depends on x, 1, spread is higher for z,, 1 far from &

— additional variability +s* due to €,41, estimating o by s?




Form of predictive distribution anticipates theory

— later under Multiple linear regression —
S-Plus function: predict() handles all the details

Examples in S-Plus code: pollution data, mercedes used prices, etc
Model fit assessment /implications: Explore predictive distributions

Residual analysis: Graphical exploration of fitted residuals €;
e Standardise: r; = ¢;/s
e Approximately standard normal? qqgplot, etc

e RESIDUALS = RESPONSE MINUS FIT:

Treat ¢; as “new data” — look at structure, other predictors

Other predictors?




