MULTIPLE LINEAR REGRESSION MODELS
More than one predictor variable: 1,2, ..., x),
e.g., y =pollutant level, x1 =windspeed, x5 =temperature, .

n observations: Responses y;, predictors x;y, ..., %)

Linear regression model: extend one-predictor model to
Yi = a+ 0121 + - BpZip + €

for observation (or “case”) i =1,2,...,n
Write 5y = « for intercept
Vector notation:
Y, = X:3 + €
e column vector: x; = (1, z;1,...,Tip)’

e regression parameter vector: 8 = (6o, B1,...,0p)’




MATRIX NOTATION

e Response vector: y has elements y;

e Design matrix: X has rows x

e Error vector: € has elements ¢;
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e j® column of X : n values of regressor variable j




MODEL IN MATRIX NOTATION:

y=XB+e€

e € has multivariate normal error distribution, zero mean vector

and variance-covariance matrix o1,

e So y is multivariate normal with mean vector X3 and

variance-covariance matrix o21,,

Variance-covariance matrix: collects variances and covariances




EXAMPLE: Pollutant data

Regression of oxid on temp and wind
e p=2k=3, x;=(1,temp;, wind;)’
e (31 is regression coeflicient on temp
® (35 is regression coeflicient on wind

e n =30 so y and € are 30-vectors, X is 30 X 3 design matrix

* MEANING OF REGRESSION PARAMETERS *
Different meaning in different models!

E.G.,
e Straight line regression of oxid on temp

e Compare with regression of oxid on both temp and wind




EXAMPLE: Mercedes data

y; = log(price) regressed on age and model

Straight line (“depreciation”) to predict log(price) based on age
( nb: Why log? )

MODEL 1: Different intercepts across model but same

depreciation rates

e Define intercepts as

( Bo for model 0 cars
Bo + 81 for model 1 cars
{ Bo + B2 for model 2 cars
Bo + B3 for model 3 cars
| Bo + B4 for model 4 cars

e depreciation rate parameter (s




So k = 6, and

1, 0,0,0,0, age;) for model 0 cars
1, 1,0,0,0, age;) for model 1 cars
1, 0,1,0,0, age;) for model 2 cars
1 )
1 )

, 0,0,1,0, age;) for model 3 cars

y Ou Ov Ou Hv age;

for model 4 cars

e model is a FACTOR predictor variable: classifies response into
groups — here, regression has a different intercept for each
group (= “level” of the factor)

e “dummy variables” (0/1 indicators) in x; to select factor levels
e model 0 is the baseline level of the factor — conventional

e for the other factor levels, § parameters measure relative to
baseline

e labelling of factor levels: 0 =baseline, etc




Mercedes data MODEL 2: Different depreciation rates too

Depreciation rate parameters
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so that £ = 10 and

(1,
(1,
(1,
(1L

for model 0 cars
for model 1 cars
for model 2 cars
for model 3 cars
for model 4 cars

(1, 0,0,0,0, age;,0,0,0,0) for model 0 cars
1,0,0,0, age;,age;,0,0,0
1, 0,1,0,0, age;,0,age;,0,0
1, 0,0,1,0, age;, 0,0, age;,
1, 0,0,0,1, age;,0,0,0,age;

for model 1 cars
for model 2 cars
for model 3 cars

for model 4 cars
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LEAST SQUARES ESTIMATES (LSE):

Total sum of squares about the regression line:

M ML%

Q(B) =€ée=(y—XB)(y — XB)

LSE: choose 3 to minimise Q(B)

FACT:
B=VX'y and V= (X'X)~

nb: V could be named V 3




EXAMINING MODEL FIT

e Fitted values §; = wa = mo + WHHS Tt QM&%

Residuals €; = y; — 9; ... estimates of ¢;

Residual sum of squares Q(8) = >_._, €7

A

1=1 1

— measures remaining/residual variation in response data —

Residual sample variance:

S

2

n

s =) &/(n—k)

1=1

is a point estimate of o2 from fitted model
n.b., n — k degrees of freedom

— “lose” one degree of freedom for each model parameter in 3 —




R? measure of model fit:

Simplest model: no predictors: y; = (g + €;

A

Bo = y and residual deviance Q(y) = S, = total sum of squares

LSE fit: proportion of deviance “explained” by model is

RP=1- QAWV\@E




THEORY FOR INFERENCE: REFERENCE POSTERIOR
Key aspects of the REFERENCE posterior for (3, 0?) :

e LSE m is MLE and reference posterior mean vector for 3
e posterior for B is multivariate T with n — k degrees of freedom

e (marginal) posterior for each (3, is Student T with n — k d.o.f.
T (85, %07

where Qw are elements of m and @w_ = 50 diagonal element of V
As in simple straight line model — key to assessing significance
of contribution to regression fit of predictor variable j

e s’ is the posterior estimate of 0 — residual variance




HONEST PREDICTION FROM FITTED MODEL

Posterior predictive distribution for a new case: y,11 at new X,11

/
Yn4+1 — Nfrfm T €En+1

Also a Student T distribution with n — k d.o.f.

22
Yn+1 o~ MJSI\AAMS S @@v
e Meanis § =x,,,03

2 = s + s2w? with w® = x},; VXyt1

e Spread: mN@@

— s%w? — posterior uncertainty about x’3 alone

x uncertainty about the “fitted line” alone, ignoring €,,1 1

* depends on X,11, spread is higher for x,,; far from %

— additional variability +s* due to €,41, estimating o by s?




POSTERIOR AND PREDICTIVE SIMULATION:

Sometimes of interest and useful to generate (many) sample values
from posterior and predictive distributions
— histogram approximations to posteriors and predictives —

— S-Plus code available —




MORE THEORY FOR INFERENCE: SUBSET F TESTS

Model A: As above on p predictors plus intercept:
k—vector 3 where k =p+1

Focus on any subset of r predictors:
Are they meaningful in this model?

Model B: remove any subset of r predictors:

equivalent to setting r elements of 3 to zero simultaneously

Assess significance of these r predictors in model A by comparing
with model B




COMPARING DEVIANCES: AD-HOC IDEA:.:
e Residual deviances ()4 and (Qp such that Qp — Q4 > 0

o () — ()4 is deviance explained by the r predictors in A but
not B

e extra deviance explained “costs” the extra r parameters, so

(@B —Qa)/r

is the per-parameter extra deviance explained, or the average

change in explained deviance

e How big is this? Is it significant? Standardise with respect to

scale of deviance,

,\.ovm — AA@Q — @\C\ﬁ%\mw

where s2 is the residual estimate of 0 in the “bigger” model A




THEORETICAL RESULT:
Reference posterior p(3|Y) in the “bigger” model A

Write v = the subvector of r parameters in question

e p(v|Y) is a multivariate T),_j distribution in r dimensions

e Contours are ellipses (e.g., r = 2)

e Find the contour running through the point v =0

e Find the probability on « values outside the contour

e = Prob on ~ values at least as extreme as v = 0

e = Prob outside HPD region for ~ defined by v =0

e p—value (tail area) of the hypothesis that v =0
RESULT: p — value = Pr(Fy n—k > fobs)




F TESTS IN EXPLORING MODELS:
e it a model on some chosen predictors

e Add a group of r new predictors: refit model

— e.g., r parameters for a factor variable
e Compute F test for “significance” of model improvement

e Compare with alternative model “extensions”




DATA ANALYTIC ISSUES IN REGRESSION:
RESIDUAL DIAGNOSTICS

Fitted residuals €¢; = y; — ¥;

e Search for structure: Explore plots versus other possible

predictors:

e Lvidence of outliers or non-normal distribution —
— standardised residuals r; = ¢; /s “should be” roughly N(0,1)

— qgnorm() and plots versus predictors —
e Possible model extensions: unequal variances

e Significant correlations between the residuals and some
additional predictors e.g., autocorrelations when data are time

ordered — see below

Introductory residual diagnostics: Big area (predictive model
checks, etc)




DATA ANALYTIC ISSUES IN REGRESSION:
TRANSFORMATIONS

Often transform y and/or some of the x; variables

Most common, (natural) log transforms of positive data values
e Original response z lognormal, so y = log(z) is normal
e Multiplicative effects: e.g., used car prices z;

— assume 2; = exp(y;) and y; = a + bt + e; with e; ~ N(0,0?)

— Ratio of expected prices is depreciation rate between time ¢
and t +1: r = exp(b)




DATA ANALYTIC ISSUES IN REGRESSION:
COLLINEARITY

Collinearity = Observed correlations among predictor variables
e.g., age and mile of used cars

explore in scatter plots of predictors, via cor(age, mile), for

example
e Two or more related predictors measure “same” features
e Model using either one alone may be adequate

e Adding second may explain little additional variation in response

— check by comparing R? or assessing significance




MULTICOLLINEARITY (continued)

High multicollinearity induces numerical instabilities in computing
inverse of X'X for model fitting

— results may be suspect —
(PARTIAL) FIXES:

e Explore and identify highly collinear predictors — be selective

e modify predictors — make values relative to sample mean
— e.g., replace temp by temp—mean(temp), etc

— reduces sample correlations between predictors, to some
degree

— may be sufficient to avoid numerical problems

FACT: High sample correlation between two predictors induces a

high posterior dependence between corresponding (3; parameters

S-Plus: Displays posterior correlations in multivariate t posterior




MORE EXAMPLES OF REGRESSION:

e Polynomial function fitting:

2 ... to fit quadratic function of

— e.g., r1 =time, o = time
time to response data

— alone or with additional predictors:

e Several factor predictors to cross-classity response

— salary data classified by management level, sex of worker,

education level
— ANOVA terminology: Analysis of Variance

— How much variation is explained by each classitying factor?

e Autoregressions: see following slides




AUTOREGRESSIONS

A most important and common model for time series observations

Time series of response values y;,2 =1,2,...,n

where i = t = time variable (minutes, weeks, years, ...)

AUTO REGRESSION: regress y; on past values

Yi = Bo + B1Yi—1+ ...+ BpYi—p + €
i.e., predictors x are lagged values of the time series

e Fundamental class of time series models: AR(p) —

autoregressive mode of order p
e Fit using same linear modelling theory and methods

e Empirical: observed fit to data




e Substantive: properties of stochastic linear difference equations
— Periodic behaviour of time series (EEG, Econ, Geology, ...)
— Ranges of frequencies

— Turning points, forecasting




AUTOREGRESSIONS and AUTOCORRELATION

Recall sample correlation r between y and x

Now, x =lagged value of y so we use “autocorrelation”
Autocorrelation at lag 7 : sample correlation between y;, y;_;
S-Plus: acf() and lag.plot()

— see EEG data, SOI data, etc —




