MULTIPLE LINEAR REGRESSION MODELS

More than one predictor variable: x_1, x_2, \ldots, x_p

e.g., y = pollutant level, $x_1 = \text{windspeed}$, $x_2 = \text{temperature}$, ...

n observations: Responses y_i , predictors x_{i1}, \ldots, x_{ip}

Linear regression model: extend one-predictor model to

$$y_i = \alpha + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \epsilon_i$$

for observation (or "case") i = 1, 2, ..., n

Write $\beta_0 = \alpha$ for intercept

Vector notation:

$$y_i = \mathbf{x}_i' \boldsymbol{\beta} + \epsilon_i$$

- column vector: $\mathbf{x}_i = (1, x_{i1}, \dots, x_{ip})'$
- regression parameter vector: $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)'$

MATRIX NOTATION

- Response vector: y has elements y_i
- Design matrix: X has rows \mathbf{x}'_i ... n rows, k = p + 1 columns
- Error vector: ϵ has elements ϵ_i

$$\mathbf{y} = egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = egin{pmatrix} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_n \end{pmatrix}$$

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_{1}' \\ \mathbf{x}_{2}' \\ \vdots \\ \mathbf{x}_{n}' \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

 j^{th} column of $\mathbf{X}:n$ values of regressor variable j

MODEL IN MATRIX NOTATION:

$$y = X\beta + \epsilon$$

- ϵ has multivariate normal error distribution, zero mean vector and variance-covariance matrix $\sigma^2 I_n$
- So y is multivariate normal with mean vector $\mathbf{X}\boldsymbol{\beta}$ and variance-covariance matrix $\sigma^2 I_n$

Variance-covariance matrix: collects variances and covariances

EXAMPLE: Pollutant data

Regression of oxid on temp and wind

- $p = 2, k = 3, \quad \mathbf{x}_i = (1, temp_i, wind_i)'$
- β_1 is regression coefficient on temp
- β_2 is regression coefficient on wind
- $n=30 \text{ so } \mathbf{y} \text{ and } \boldsymbol{\epsilon} \text{ are } 30\text{-vectors}, \, \mathbf{X} \text{ is } 30\times 3 \text{ design matrix}$

* MEANING OF REGRESSION PARAMETERS *

Different meaning in different models!

Ħ.G.,

- Straight line regression of oxid on temp
- Compare with regression of oxid on both temp and wind

EXAMPLE: Mercedes data

 $y_i = \log(\texttt{price})$ regressed on age and model

Straight line ("depreciation") to predict log(price) based on age (nb: Why log?)

MODEL 1: Different intercepts across model but same depreciation rates

• Define intercepts as

$$\begin{cases} \beta_0 & \text{for model 0 cars} \\ \beta_0 + \beta_1 & \text{for model 1 cars} \\ \beta_0 + \beta_2 & \text{for model 2 cars} \\ \beta_0 + \beta_3 & \text{for model 3 cars} \\ \beta_0 + \beta_4 & \text{for model 4 cars} \end{cases}$$

• depreciation rate parameter β_5

So k = 6, and

$$\mathbf{x}_{i}' = \begin{cases} (1, 0, 0, 0, 0, age_{i}) & \text{for model 0 cars} \\ (1, 1, 0, 0, 0, age_{i}) & \text{for model 1 cars} \\ (1, 0, 1, 0, 0, age_{i}) & \text{for model 2 cars} \\ (1, 0, 0, 1, 0, age_{i}) & \text{for model 3 cars} \\ (1, 0, 0, 0, 1, age_{i}) & \text{for model 4 cars} \end{cases}$$

- model is a FACTOR predictor variable: classifies response into group (= "level" of the factor) groups – here, regression has a different intercept for each
- "dummy variables" (0/1 indicators) in \mathbf{x}_i to select factor levels
- model 0 is the baseline level of the factor conventional
- for the other factor levels, β parameters measure relative to baseline
- labelling of factor levels: 0 = baseline, etc

Mercedes data MODEL 2: Different depreciation rates too

Depreciation rate parameters

$$= \begin{cases} \beta_5 & \text{for model 0 cars} \\ \beta_5 + \beta_6 & \text{for model 1 cars} \\ \beta_5 + \beta_7 & \text{for model 2 cars} \\ \beta_5 + \beta_8 & \text{for model 3 cars} \\ \beta_5 + \beta_9 & \text{for model 4 cars} \end{cases}$$

so that k = 10 and

$$\mathbf{x}_{i}' = \begin{cases} (1, 0,0,0,0, age_{i}, 0,0,0,0) & \text{for model 0 cars} \\ (1, 1,0,0,0, age_{i}, age_{i}, 0,0,0) & \text{for model 1 cars} \\ (1, 0,1,0,0, age_{i}, 0, age_{i}, 0,0) & \text{for model 2 cars} \\ (1, 0,0,1,0, age_{i}, 0,0, age_{i},0) & \text{for model 3 cars} \\ (1, 0,0,0,1, age_{i}, 0,0,0, age_{i}) & \text{for model 4 cars} \end{cases}$$

LEAST SQUARES ESTIMATES (LSE):

Total sum of squares about the regression line:

$$Q(\beta) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \mathbf{x}_i' \beta)^2$$

$$Q(\beta) = \epsilon' \epsilon = (y - X\beta)'(y - X\beta)$$

LSE: choose $\hat{\beta}$ to minimise $Q(\beta)$

FACT:

$$\hat{\boldsymbol{\beta}} = \mathbf{V}\mathbf{X}'\mathbf{y}$$
 and $\mathbf{V} = (\mathbf{X}'\mathbf{X})^{-1}$

nb: V could be named $V_{oldsymbol{eta}}$

EXAMINING MODEL FIT

- Fitted values $\hat{y}_i = \mathbf{x}_i' \hat{\boldsymbol{\beta}} = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip}$
- Residuals $\hat{\epsilon}_i = y_i \hat{y}_i$

Residual sum of squares $Q(\hat{\beta}) = \sum_{i=1}^{n} \hat{\epsilon}_i^2$

... estimates of ϵ_i

measures remaining/residual variation in response data –

Residual sample variance:

$$s^2 = \sum_{i=1}^{n} \hat{\epsilon}_i^2 / (n-k)$$

 s^2 is a point estimate of σ^2 from fitted model

n.b., n-k degrees of freedom

- "lose" one degree of freedom for each model parameter in β -

R^2 measure of model fit:

Simplest model: no predictors: $y_i = \beta_0 + \epsilon_i$

 $\hat{\beta}_0 = \bar{y}$ and residual deviance $Q(\bar{y}) = S_{yy} = \text{total sum of squares}$

LSE fit: proportion of deviance "explained" by model is

$$R^2 = 1 - Q(\hat{\beta})/S_{yy}$$

THEORY FOR INFERENCE: REFERENCE POSTERIOR

Key aspects of the REFERENCE posterior for (β, σ^2) :

- LSE $\hat{\boldsymbol{\beta}}$ is MLE and reference posterior mean vector for $\boldsymbol{\beta}$
- posterior for β is multivariate T with n-k degrees of freedom
- (marginal) posterior for each β_j is Student T with n-k d.o.f.

$$T_{n-k}(\hat{\beta}_j, s^2 v_j^2)$$

of contribution to regression fit of predictor variable jAs in simple straight line model – key to assessing significance where $\hat{\beta}_j$ are elements of $\hat{\beta}$ and $v_j^2 = j^{\text{th}}$ diagonal element of \mathbf{V}

 s^2 is the posterior estimate of σ^2 – residual variance

HONEST PREDICTION FROM FITTED MODEL

Posterior predictive distribution for a new case: y_{n+1} at new \mathbf{x}_{n+1}

$$y_{n+1} = \mathbf{x}'_{n+1}\boldsymbol{\beta} + \epsilon_{n+1}$$

Also a Student T distribution with n-k d.o.f.

$$y_{n+1} \sim T_{n-k}(\hat{y}, s^2 v_y^2)$$

- Mean is $\hat{y} = \mathbf{x}'_{n+1}\hat{\boldsymbol{\beta}}$
- Spread: $s^2 v_y^2 = s^2 + s^2 w^2$ with $w^2 = \mathbf{x}'_{n+1} \mathbf{V} \mathbf{x}_{n+1}$ s^2w^2 – posterior uncertainty about $\mathbf{x}'\boldsymbol{\beta}$ alone
- uncertainty about the "fitted line" alone, ignoring ϵ_{n+1}
- * depends on \mathbf{x}_{n+1} , spread is higher for \mathbf{x}_{n+1} far from $\bar{\mathbf{x}}$
- additional variability $+s^2$ due to ϵ_{n+1} , estimating σ^2 by s^2

POSTERIOR AND PREDICTIVE SIMULATION:

from posterior and predictive distributions Sometimes of interest and useful to generate (many) sample values

histogram approximations to posteriors and predictives

– S-Plus code available –

MORE THEORY FOR INFERENCE: SUBSET F TESTS

Model A: As above on p predictors plus intercept:

$$k$$
-vector $\boldsymbol{\beta}$ where $k = p + 1$

Focus on any subset of r predictors:

Are they meaningful in this model?

Model B: remove any subset of r predictors:

equivalent to setting r elements of β to zero simultaneously

with model B Assess significance of these r predictors in model A by comparing

COMPARING DEVIANCES: AD-HOC IDEA:

- Residual deviances Q_A and Q_B such that $Q_B Q_A > 0$
- $Q_B Q_A$ is deviance explained by the r predictors in A but
- extra deviance explained "costs" the extra r parameters, so

$$(Q_B - Q_A)/r$$

change in explained deviance is the per-parameter extra deviance explained, or the average

How big is this? Is it significant? Standardise with respect to scale of deviance,

$$f_{obs} = \{(Q_B - Q_A)/r\}/s_A^2$$

where s_A^2 is the residual estimate of σ^2 in the "bigger" model A

THEORETICAL RESULT:

Reference posterior $p(\beta|Y)$ in the "bigger" model A

Write γ = the subvector of r parameters in question

- $p(\gamma|Y)$ is a multivariate T_{n-k} distribution in r dimensions
- Contours are ellipses (e.g., r = 2)
- Find the contour running through the point $\gamma = 0$
- Find the probability on γ values outside the contour
- = Prob on γ values at least as extreme as $\gamma = 0$
- = Prob outside HPD region for γ defined by $\gamma = 0$
- p-value (tail area) of the hypothesis that $\gamma = 0$

RESULT: $p - value = Pr(F_{r,n-k} > f_{obs})$

F TESTS IN EXPLORING MODELS:

- Fit a model on some chosen predictors
- Add a group of r new predictors: refit model
- e.g., r parameters for a factor variable
- Compute F test for "significance" of model improvement
- Compare with alternative model "extensions"

DATA ANALYTIC ISSUES IN REGRESSION: RESIDUAL DIAGNOSTICS

Fitted residuals $\hat{\epsilon}_i = y_i - \hat{y}_i$

- Search for structure: Explore plots versus other possible predictors:
- Evidence of *outliers* or non-normal distribution –
- standardised residuals $r_i = \epsilon_i/s$ "should be" roughly N(0,1)
- qqnorm() and plots versus predictors –
- Possible model extensions: unequal variances
- Significant correlations between the residuals and some ordered – see below additional predictors e.g., autocorrelations when data are time

checks, etc) Introductory residual diagnostics: Big area (predictive model

DATA ANALYTIC ISSUES IN REGRESSION: TRANSFORMATIONS

Often transform y and/or some of the x_i variables

Most common, (natural) log transforms of positive data values

- Original response z lognormal, so y = log(z) is normal
- Multiplicative effects: e.g., used car prices z_t
- assume $z_t = \exp(y_t)$ and $y_t = a + bt + e_t$ with $e_t \sim N(0, \sigma^2)$
- Ratio of expected prices is depreciation rate between time tand $t + 1 : r = \exp(b)$

DATA ANALYTIC ISSUES IN REGRESSION: COLLINEARITY

e.g., age and mile of used cars explore in scatter plots of predictors, via cor(age, mile), for Collinearity = Observed correlations among *predictor* variables

Two or more related predictors measure "same" features

example

- Model using either one alone may be adequate
- Adding second may explain little additional variation in response - check by comparing R^2 or assessing significance

MULTICOLLINEARITY (continued)

inverse of X'X for model fitting High multicollinearity induces numerical instabilities in computing

results may be suspect –

(PARTIAL) FIXES:

- Explore and identify highly collinear predictors be selective
- modify predictors make values relative to sample mean
- e.g., replace temp by temp-mean(temp), etc
- reduces sample correlations between predictors, to some degree
- may be sufficient to avoid numerical problems

S-Plus: Displays posterior correlations in multivariate t posterior high posterior dependence between corresponding β_j parameters FACT: High sample correlation between two predictors induces a

MORE EXAMPLES OF REGRESSION:

- Polynomial function fitting:
- e.g., $x_1 = \text{time}, x_2 = \text{time}^2, \dots$ to fit quadratic function of time to response data
- alone or with additional predictors:

Several factor predictors to cross-classify response

- salary data classified by management level, sex of worker, education level
- ANOVA terminology: Analysis of Variance
- How much variation is explained by each classifying factor?
- Autoregressions: see following slides

AUTOREGRESSIONS

A most important and common model for time series observations

where i = t = time variable (minutes, weeks, years, ...)Time series of response values y_i , i = 1, 2, ..., n

AUTO REGRESSION: regress y_i on past values

$$y_i = \beta_0 + \beta_1 y_{i-1} + \ldots + \beta_p y_{i-p} + \epsilon_i$$

i.e., predictors x are lagged values of the time series

- autoregressive mode of order pFundamental class of time series models: AR(p)
- Fit using same linear modelling theory and methods
- Empirical: observed fit to data

- Substantive: properties of stochastic linear difference equations
- Periodic behaviour of time series (EEG, Econ, Geology, ...)
- Ranges of frequencies
- Turning points, forecasting

AUTOREGRESSIONS and AUTOCORRELATION

Recall sample correlation r between y and x

Now, x = lagged value of y so we use "autocorrelation"

Autocorrelation at lag j: sample correlation between y_i, y_{i-j}

S-Plus: acf() and lag.plot()

– see EEG data, SOI data, etc –