
(a)

Y ∼ Bi(20, θG)

Z ∼ Bi(18, θI)

(b)

θ̂G =
17

20

θ̂I = 1

θ̄G|Y =
9

11

θ̄I |Y =
19

20

(c) In S-plus,

> thetaG_rbeta(10000, 18, 4)

> thetaI_rbeta(10000, 19, 1)

> R_thetaG/thetaI

> summary(R)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.451 0.8048 0.8663 0.8632 0.9247 1.4

> hist(R, 25)

> length((1:10000)[R<1])/10000

[1] 0.9325

> quantile(R, c(.025, .975))

2.5% 97.5%

0.6607913 1.056657

The historgram of R is shown in Figure 1. It’s centered around 0.86, with the range of about
0.5 to 1.2. 93.25% of the simulated Rs are less than 1. The 95% credible interval of R

is (0.66, 1.06). From this We can conclude that the examiner is in fact better at detecting
truth-tellers than liars on the basis of this data.

(d) > pG_thetaG/(thetaG+1-thetaI)

> summary(pG)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.6793 0.9208 0.9581 0.9453 0.9826 1

> hist(pG)

> quantile(pG, c(.025, .975))

2.5% 97.5%

0.8244609 0.9984045

The histogram of pG is in Figure 2. The Bayesian posterior mean is 0.9581. The 95% credible
interval of pG is (0.824, 0.998). We can thus conclude that he is very likely to be guilty.

(e) P̂G = 1. This is not a very good estimate given the data because it says with certainty that
a suspect is guilty if the polygraph says he is. The posterior probability, though, shows that
there is inevitably uncertainty. It’s not a good idea to adopt MLE because we are dealing with
real people, who will have to serve real sentence if wrongly convicted.
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Figure 1: Histogram of R

2



0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
2

4
6

8
10

12
14

pG

Figure 2: Histogram of pG
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