Feb 1 lecture

• ANOVA table for simple linear regression
 - computed relative to a specific larger model and a smaller
 model obtained from the full model by setting some
 parameters to zero.
 - In simple linear regression, test hypothesis:
 • $H_0: \mu(Y|X) = \beta_0$
 • $H_A: \mu(Y|X) = \beta_0 + \beta_1 X$
 - Equivalent to a test of $H_0: \beta = 0; H_A: \beta \neq 0$
• Composite ANOVA table for lack-of-fit test
 - for data with replicates at each X (can estimate pure error)
 assess adequacy of linear model.

Linear Models

• A model that is linear in the coefficients (β's)
• Polynomial regression
• Transformed variables
• Interaction effects
 - qualitative variables (indicator or dummy variables)
 • Additive effect? Interaction effect? No effect?
 - multiple level categorical variables

Polynomial Regression

• $\mu(Y|X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3$
• Often of interest when only one independent variable
• For most biological work, terms of X no higher than
cubic are used
• Note that for each higher order term added, we lose a
degree of freedom for estimating $\sigma^2 = \sigma^2(Y|X)$
• Difficult to read structural meaning into the terms X^2, X^3
• Usually forward selection approach

Gene Frequency and Distance

• We model frequency of an allele (Lap^{nd}) in the
 blue mussel as a function of distance (miles east
 of Southport, Connecticut).
Add a quadratic term

\[\mu(\text{Frequency}|\text{Distance}) = \beta_0 + \beta_1 \text{Distance} + \beta_2 \text{Distance}^2 \]

Coefficients:

| Coefficient | Value | Std. Error | t value | Pr(>|t|) |
|-------------|-------|------------|---------|----------|
| (Intercept) | 0.201 | 0.0547 | 3.6761 | 0.0028 |
| miles | -0.0137| 0.0068 | -2.0277 | 0.0636 |
| I(miles^2) | 0.0006 | 0.0002 | 2.7554 | 0.0164 |
| I(miles^3) | 0.0000 | 0.0000 | -2.3662 | 0.0342 |

Splus Output

\[\mu(\text{Frequency}|\text{Distance}) = \beta_0 + \beta_1 \text{Distance} + \beta_2 \text{Distance}^2 \]

Coefficients:

| Coefficient | Value | Std. Error | t value | Pr(>|t|) |
|-------------|-------|------------|---------|----------|
| (Intercept) | 0.457682 | 0.01647738 | 28.3652 | 0.0000 |
| miles | 0.0008 | 0.00032 | 2.618 | 0.0007 |
| I(miles^2) | 0.0000 | 0.0000 | -2.3662 | 0.0342 |

Model Suggested by Koehn

Call: lm(formula = asin(sqrt(freq)) ~ miles + miles^2 + miles^3)

Residuals:
 Min 1Q Median 3Q Max
-0.1076 -0.03728 -0.00682 0.03319 0.1049

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) 0.4577 0.0596 7.6840 0.0000
miles -0.0165 0.0074 -2.2371 0.0434
I(miles^2) 0.0007 0.0002 3.0540 0.0092
I(miles^3) 0.0000 0.0000 -2.6969 0.0183

Residual standard error: 0.0597 on 13 degrees of freedom
Multiple R-Squared: 0.9112
F-statistic: 44.46 on 3 and 13 degrees of freedom, the p-value is 4.268e-007

Interaction Effects

- Red spruce forests in the Appalachian Mountains show signs of decline, with many dead or dying trees.
- Deposition of airborne pollutants such as metals or acids tends to be heavier at higher elevations, where red spruce predominate.
- Linear model relating the percentage of dead or badly damaged trees to elevation (meters) and region (North or South).
- 64 sites. Eight of the sites are in southern states (West Virginia, Virginia, and North Carolina); the remainder are northern (New Hampshire, Vermont, and New York).
- Cite: Johnson & Siccama, Committee on Monitoring and Assessment of Trends in Acid Deposition, 1986.

Three models to describe region effect

- **Model A: Equal Lines.** There is a linear relationship between Damage and Elevation; there is no difference in this relationship by region.
- **Model B: Parallel Lines.** There is a linear relationship between Damage and Elevation; the rates of change are the same for the regions, but the mean percent damaged at each elevation differs.
- **Model C: Separate Lines.** There is a linear relationship between Damage and Elevation, but it is different for each region (separate slope, intercept for each).

See Display 9.8 of Slewth, page 239.
Model A: Splus Output
Call: lm(formula = Perc.Damage ~ Elevation)
Residuals:
 Min 1Q Median 3Q Max
 -38.39 -16.29 -1.064 15.35 47.99

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) 29.1034 11.9125 2.4431 0.0174
Elevation 0.0088 0.0122 0.7256 0.4708

Residual standard error: 21.18 on 62 degrees of freedom
Multiple R-Squared: 0.008421
F-statistic: 0.5265 on 1 and 62 degrees of freedom, the p-value is 0.4708

Model B

Model B: Splus Output
Call: lm(formula = Perc.Damage ~ Elevation + Location)
Residuals:
 Min 1Q Median 3Q Max
 -29.25 -13.79 -0.8327 13.2 33.75

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) -60.1523 17.5731 -3.4230 0.0011
Elevation 0.0568 0.0126 4.5245 0.0000
Location 49.7802 8.2448 6.0378 0.0000

Residual standard error: 16.89 on 61 degrees of freedom
Multiple R-Squared: 0.3793
F-statistic: 18.64 on 2 and 61 degrees of freedom, the p-value is 4.809e-007

Model C

Model B: Parallel Lines Model
Residuals vs Fitted

Residuals vs Fitted

Model C: Separate Lines Model
Residuals vs Fitted

Residuals vs Fitted
Model C: Splus Output

Call: lm(formula = Perc.Damage ~ Elevation + Location + Elevation:Location)

Residuals:
 Min 1Q Median 3Q Max
-36.78 -11.61 0.3082 11.04 26.22

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) 37.2836 25.8967 1.4397 0.1551
Elevation -0.0172 0.0193 -0.8929 0.3755
Location -78.6220 28.5397 -2.7548 0.0078
Elevation:Location 0.1084 0.0233 4.6464 0.0000

Residual standard error: 14.61 on 60 degrees of freedom
Multiple R-Squared: 0.5436
F-statistic: 23.82 on 3 and 60 degrees of freedom, the p-value is 2.825e-10

Modify Model C to eliminate "Elevation"?

Call: lm(formula = Perc.Damage ~ Location+Elevation:Location)

Residuals:
 Min 1Q Median 3Q Max
-36.78 -10.87 0.7189 11.04 26.22

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) 14.6250 5.1556 2.8367 0.0062
Location -55.9634 13.0375 -4.2925 0.0001
Elevation:Location 0.0912 0.0131 6.9522 0.0000

Residual standard error: 14.58 on 61 degrees of freedom
Multiple R-Squared: 0.5375
F-statistic: 35.45 on 2 and 61 degrees of freedom, the p-value is 6.106e-11

Extra Sum of Squares F-test (10.3, Sleuth)

\[H_0: \mu[P|E,L] = \beta_0 + \beta_1 E \]
\[H_1: \mu[P|E,L] = \beta_0 + \beta_1 E + \beta_2 L + \beta_3 E \times L \]

Reduced:

- Terms added sequentially (first to last)
 - Elevation

Full:

- Terms added sequentially (first to last)
 - Location

F-statistic: \(F = \frac{(27809.77 - 12801.00)/62 - 60)}{213.35} = 35.17 \)

Reject \(H_0 \) if \(F > F_{(0.05,2,60)} = 3.15 \)

Individual North/South Models

South Only

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) -41.3384 12.4165 -3.3239 0.0016
Elevation[Location = 0] -0.0172 0.0115 -1.4964 0.1852

Residual standard error: 8.716 on 6 degrees of freedom
Multiple R-Squared: 0.2719
F-statistic: 2.239 on 1 and 6 degrees of freedom, the p-value is 0.1852

North Only

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) -41.3384 12.4165 -3.3239 0.0016
Elevation[Location = 1] 0.0912 0.0136 6.7049 0.0000

Residual standard error: 15.12 on 54 degrees of freedom
Multiple R-Squared: 0.4563
F-statistic: 44.96 on 1 and 54 degrees of freedom, the p-value is 2.41e-05

Compare these results to Model C results.