Odds ratio can be estimated from both

Prospective sampling
- Select exposed group and comparable unexposed group. Observe outcomes over time (e.g. Disease).
- Exposure totals fixed; incidence of outcome random.

Retrospective sampling
- Select outcome and non-outcome group and investigate whether exposure occurred.
- Frequency of exposure is random.
- Cannot estimate proportions of outcomes at each level of exposure for retrospective studies.

Deviance as analog to RSS

- Deviance residuals are based on the loglikelihood of binary response variables. (see p. 578)
- Deviance component for each observation i is
 \[2 \left[l_i(y_i) - l_i(\pi_i) \right] \]
- Deviance residual is square root of this quantity, and is negative if \(y_i < \pi_i \), positive if \(y_i > \pi_i \)
- Model deviance is the sum of squared deviance residuals, on \(n-p \) degrees of freedom.

Drop in deviance Chi-Squared Test

- Compare a model with K parameters (full) to model with K-H parameters (reduced)
- Test: \(H_0: \beta_1 = \beta_2 = \ldots = \beta_H = 0 \) vs. \(H_o: \beta_1, \ldots, \beta_H \) free
- Test statistic is:
 \[D = (\text{deviance from reduced}) - (\text{deviance from full}) \]
 on H d.f.
- Under the null (reduced is adequate), D behaves like a \(\chi^2_H \).
- p-value: \(P(\chi^2_H > D | H_0 \text{ is true}) \)

From last class

Comparison of null model and univariate model:
- Null model (deviance = 83.18)
- owl-pctring1 (deviance = 71.10)

Drop in Deviance Test
- \(D = 12.08 \) on 1 d.f.
- p-value: \(P(\chi^2_1 > 12.08 | H_0) = 0.0005 \) (from Tables)

Result: Reject Null and conclude slope term is significantly different from zero. There appears to be a linear association between the log odds that a site is a nest site and density of mature forest in ring 1.

Sleuth then considers selecting a model with successively larger rings to evaluate significance of each additional increment of mature forest. (not covered here).
Pesticide Exposure

- Pesticide residues in human milk, Western Australia 1979-80
- 45 donors
 - age in years
 - new suburb (yes/no; coded as yes=1, no=0)
 - house treated for termites in past 3 years (yes/no)
 - milk contained >0.009 ppm dieldrin (yes/no)

Write out fitted model for logistic regression of dieldrin on age, new suburb and termites.

- What predictors are significant at $\alpha=0.05$?
- Interpret each coefficient in a sentence.
- Compare presence of above-average levels of dieldrin for new and old suburbs using an odds ratio.
- What probability of high dieldrin is predicted for a woman of average age, in old-suburb house not treated for termites? (avg. age=30)
- Test the joint significance of age and new suburb in the model.

Dieldrin ~ Age + New + Treated

*** Generalized Linear Model ***

Call: glm(formula = Dieldrin ~ Age + New + Treated, family = binomial(link = logit), data = dieldrin, na.action = na.exclude, control = list(epsilon= 0.0001, maxit = 50, trace = F))

Coefficients:

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
<th>Std. Error</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-8.9727497</td>
<td>3.8532397</td>
<td>-2.328625</td>
</tr>
<tr>
<td>Age</td>
<td>0.2083864</td>
<td>0.1172264</td>
<td>1.777640</td>
</tr>
<tr>
<td>New</td>
<td>2.1406872</td>
<td>0.9308404</td>
<td>2.299736</td>
</tr>
<tr>
<td>Treated</td>
<td>2.5969714</td>
<td>0.9683143</td>
<td>2.681951</td>
</tr>
</tbody>
</table>

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 56.76518 on 42 degrees of freedom
Residual Deviance: 41.08711 on 39 degrees of freedom

Dieldrin ~ Age + New + Treated

Analysis of Deviance Table

Binomial model

Response: Dieldrin

Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Term</th>
<th>Df Dev</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>42</td>
<td>41</td>
<td>56.76518</td>
</tr>
<tr>
<td>Treated</td>
<td>1</td>
<td>40</td>
<td>49.67837</td>
</tr>
<tr>
<td>New</td>
<td>1</td>
<td>39</td>
<td>44.82696</td>
</tr>
<tr>
<td>Age</td>
<td>1</td>
<td>38</td>
<td>41.08711</td>
</tr>
</tbody>
</table>

4/18/01
Dieldrin ~ Treated

Call: glm(formula = Dieldrin ~ Treated, family = binomial(link = logit), data = dieldrin, na.action = na.exclude, control = list(epsilon = 0.0001, maxit = 50, trace = F))

Deviance Residuals:
Min 1Q Median 3Q Max
-1.249127 -0.9177273 -0.5863281 1.107343 1.921256

Coefficients:

Value Std. Error t value
(Intercept) -1.673723 0.6233116 -2.685211
Treated 1.840777 0.7458884 2.467899

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 56.76518 on 42 degrees of freedom
Residual Deviance: 49.67837 on 41 degrees of freedom

Number of Fisher Scoring Iterations: 3