18. Simple Linear Regression

18.2.1. In previous set of notes

18.2.2. The Method of Least Squares (continued)

The estimate of $\sigma_{y|x}$ is obtained by

$$s_{y|x} = \frac{1}{(n-q-1)} \sum_{i=1}^{n} e_i^2 = \frac{1}{(n-q-1)} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$, where

q is the number of explanatory variables ($q=1$ for simple linear regression). We’ll call $s_{y|x}$ the **standard deviation from regression** (other names: regression standard error, residual standard error, root mean square error). Whatever it’s called, it measures the variability of y about the regression line at any x.

Now we have estimates of parameters in our linear model. Before we do inference, we illustrate some SLR “hand” calculations using the meadowfoam data.

Number of flowers per plant (y_i)

62.3 77.4 55.3 54.2 49.6 61.9 39.4 45.7 31.3 44.9

36.8 41.9 77.8 75.6 69.1 78.0 57.0 71.1 62.9 52.2

60.3 45.6 52.6 44.4

Light intensity (x_i)

150 150 300 300 450 450 600 600 750 750

900 900 150 150 300 300 450 450 600 600

750 750 900 900

Some summary statistics

```plaintext
*** Summary Statistics for data in: Case0901 ***

   flowers intensity
   Mean: 56.13750  525.0000
   Total N: 24.00000   24.0000
   Std Dev.: 13.73339  261.6835
```
\[
\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = 0.
\]

\[
\sum_{i=1}^{n} (x_i - \bar{x})^2 = n \sigma^2_{\epsilon}.
\]

\[
\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_i^2 - n \bar{x}^2}.
\]

\[
\hat{\alpha} = \bar{y} - \hat{\beta} \bar{x}.
\]

Thus, our estimated simple linear regression line is

\[
\hat{y} = \hat{\alpha} + \hat{\beta} x.
\]

Interpretation?

We could use this to calculate the \(\hat{y}_i \) for every \(i \) and then calculate \(s_{y|x} \) using the equation above, but we’ll leave that to S-Plus. S-Plus says

\[
s_{y|x} = 8.94
\]

18.2.3. Inference for Regression Coefficients

If \(y \sim N(\mu_{y|x}, \sigma^2_{y|x}) \), then it is not too difficult to show that our regression parameter estimators are also normally distributed:
\[\hat{\beta} \sim N\left(\beta, \frac{\sigma^2_{y|x}}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \right) \text{ and } \]
\[\hat{\alpha} \sim N\left(\alpha, \sigma^2_{y|x} \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \right] \right) \]

Thus, we can perform hypothesis tests and construct confidence intervals for each regression parameter estimate. We continue to use the meadowfoam data.

\(H_0: \beta = \beta_0 \)

\(H_A: \)

IF we knew \(\sigma^2_{y|x} \), then we could use the z tables:
\[z = \frac{\hat{\beta} - \beta_0}{\text{se}(\hat{\beta})} \]
where \(\text{se}(\hat{\beta}) \) is the square root of the variance of \(\hat{\beta} \) given above. (NOTE: Some hat's may be missing; will add during lecture.)

But, we must estimate \(\text{se}(\hat{\beta}) \) by plugging in \(s_{y|x} \) for \(\sigma_{y|x} \). When we do we get
\[t = \frac{\hat{\beta} - \beta_0}{\text{se}(\hat{\beta})} \]
which follows a Student’s t distribution with \((n-q-1) \) df.

\[\hat{\beta} = \]

\[\text{se}(\hat{\beta}) = \frac{s_{y|x}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}} = \]

\[t = \]
p-value

\[P(t_{(n-q-1)} \geq t) = \]

Conclusion / Interpretation?

For most applications of SLR (not all), we are only interested in making inference about the slope parameter, although we could do testing for the intercept by the same procedure as above.

(2-sided) \((1-\alpha)\times100\%\) Confidence Interval for the slope, \(\beta\):

\[\hat{\beta} \pm t_{(n-q-1),\frac{\alpha}{2}} \times \text{se}(\hat{\beta}) = \]

Interpretation?
18.2.4. Inference for Predicted Values

We may also want to “estimate” the mean of \(y \) at some \(x \) or “predict” a new \(y \) at some \(x \) (note: POB calls each “prediction”). In each case, we may also want to get some idea of the precision of your “prediction”, so we’ll construct confidence intervals (for the mean) and prediction intervals (for new \(y \)).

Predict the mean \(y \) at some \(x \) value:

\[
\hat{y} = \hat{\alpha} + \hat{\beta}x
\]

\[
se(\hat{y}) = s_{y|x} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2}}
\]

\[
\hat{y} \pm t_{(n-q-1),\alpha/2} \cdot se(\hat{y}) =
\]
Predict a new y value at some x value:

\[\hat{y} = \hat{\alpha} + \hat{\beta}x = \]

\[\text{se}(\hat{y}) = s_{yx} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2}} = \sqrt{s_{yx}^2 + \text{se}(\hat{y})} = \]

\[\hat{y} \pm t_{(n-\alpha)} \frac{\text{se}(\hat{y})}{\sqrt{2}} = \]

We could calculate confidence intervals and prediction intervals at many x values and “connect the dots” to get confidence bands (for the mean) and prediction bands (for new y values).
18.3. Evaluation of the Model

When we fit a regression model to data, we would like to get a measure of how “good” the model is and to examine if our assumptions appear to be met or not. Checking our model is sometimes referred to as regression diagnostics. This model checking is usually part of an iterative modeling framework:

1) explore the data with graphs, etc.
2) formulate a model
3) check the model (repeat 1 and 2 if necessary)
4) make inference for parameters or predictions
5) present results
18.3.1. The Coefficient of Determination

We saw the coefficient of determination in the last chapter (notes). It’s the same in this chapter, except we have different notation (R^2):

$$R^2 = r^2$$

That is, it’s the square of the Pearson (sample) correlation coefficient. Same interpretation as given before: R^2 is proportion of the total variability in the observed y values explained by the linear regression of y on x (the linear association between y and x).

Perhaps a more intuitive formula is

$$R^2 = \frac{s_y^2 - s_{y|x}^2}{s_y^2}$$

Calculating the (sample) variance among the y_i values in the meadowfoam example, we get $s_y^2 = 188.60592$. We already know $s_{y|x}^2 = 8.94^2$. Thus,

$$R^2 = \frac{188.60592 - 8.94^2}{188.60592}$$

(Which is on the S-Plus printout above.)

18.3.2. Residual Plots

Recall the residuals

$$e_i = y_i - \hat{y}_i$$
These residuals can be thought of as the sample versions of the errors ε_i, which should have mean zero and constant variance according to our model (this is equivalent to what we said earlier: y is assumed to have mean

$$\mu_{y|x} = \alpha + \beta x$$

and constant variability about the mean as indicated by

$$\sigma_{y|x}.$$

This is equivalent to the ε having zero mean for all x values and (the same) constant variability (standard deviation). Also, the assumption of normality on y at any x is equivalent to an assumption of normality on ε at any x. Thus, if our model is “good,” we would expect to see the residuals, e_i “evenly scattered” about zero with no systematic departures from zero or from the constant variance assumption. A often used graphical tool for examining the residuals is the plot of the residuals verses the predicted values:
Things to look for

- **outliers**—residual values that are “far” from zero
- **constant “spread”** of residuals about zero—a common departure from this is to see a “fan-shaped” pattern in the residual plot
- **symmetry about zero**—a rough check on the normality assumption
- **trends**
18.3.3. Transformations

One approach to handling departures from model assumptions is to transform the data. The power transformations on both x and y are common:

\[x^p \text{ and/or } y^p \]

where \(p \) is usually in \((-\infty,-3,-2,-1,-1/2,0,1/2,1,2,3,\ldots)\), where \(x^0 \) or \(y^0 \) is taken to mean \(\ln(x) \) or \(\ln(y) \), respectively.

Questions on Lab 12?