8.4 Recall that if Y_i is Exponential(θ) then $E(Y_i) = \theta$ and $V(Y_i) = \theta^2$. Hence we can use Theorem 5.12 to obtain

\[
E(\hat{\theta}_1) = E(\hat{\theta}_2) = E(\hat{\theta}_3) = E(\hat{\theta}_5) = \theta \\
V(\hat{\theta}_1) = \theta^2 \\
V(\hat{\theta}_2) = \frac{1}{4} (2\theta^2) = \frac{\theta^2}{2} \\
V(\hat{\theta}_3) = \frac{1}{9} (\theta^2 + 4\theta^2) = \frac{5\theta^2}{9} \\
V(\hat{\theta}_5) = \frac{1}{5} (3\theta^2) = \frac{3\theta^2}{5}
\]

The distribution of $\hat{\theta}_4$ can be obtained by using the methods of Section 6.6 in the text, with $F(y) = 1 - e^{-y/\theta}$. Then

\[
g_1(y) = \frac{1}{\theta} e^{-y/\theta} (e^{-y/\theta})^2 = \frac{1}{\theta} e^{-3y/\theta}
\]

which is an exponential distribution with mean $\frac{1}{3}$.

\[
E(\hat{\theta}_4) = \frac{1}{3} \\
V(\hat{\theta}_4) = \frac{\theta^2}{9}
\]

a. The unbiased estimators are $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3$, and $\hat{\theta}_5$.

b. Among these four estimators, $\hat{\theta}_5 = \bar{Y}$ has the smallest variance.

8.6

a. For the Poisson distribution, $E(Y_i) = \lambda$ and $E(\bar{Y}) = \lambda$. Hence $\hat{\lambda} = \bar{Y}$ is an unbiased estimator for λ.

b. In order to find $E(\bar{Y}^2)$, use the fact that $V(Y) = \lambda$ and $E(Y^2) = V(Y) + [E(Y)]^2 = \lambda + \lambda^2$. Then $E(C) = 3E(Y) + E(\bar{Y}^2) = 4\lambda + \lambda^2$.

c. Since $E(\bar{Y}) = \lambda$, $E(\bar{Y}^2) = V(\bar{Y}) + [E(\bar{Y})]^2 = \frac{\lambda}{n} + \lambda^2$, we construct an estimator $\bar{\theta} = \bar{Y}^2 + \bar{Y} (4 - \frac{1}{n})$. Considering

\[
E(\bar{\theta}) = \frac{\lambda}{n} + \lambda^2 + 4\lambda - \left(\frac{1}{n}\right) \lambda = 4\lambda + \lambda^2.
\]

Thus, $\bar{\theta}$ is an unbiased estimator of $E(C)$.

8.8

a. For the uniform distribution given here, $E(Y_i) = \theta + \frac{1}{2}$. Hence $E(\bar{Y}) = \theta + \frac{1}{2}$ and the bias is $B = E(\bar{Y}) - \theta = \frac{1}{2}$.

b. An unbiased estimator of θ can be constructed by using $\bar{\theta} = \bar{Y} - \frac{1}{2}$, which has

\[
E(\bar{\theta}) = \theta.
\]

c. If \bar{Y} is used as an estimator, then

\[
V(\bar{Y}) = \frac{V(Y)}{n} = \frac{1}{12n} \quad \text{and} \quad \text{MSE} = V(\bar{Y}) + B^2 = \frac{1}{12n} + \frac{1}{4}.
\]

8.18 The point estimate of μ is $\bar{Y} = 7.2\%$, and the bound on the error of estimation is $2\sigma_y$.
With $n = 200$ and $s = 5.6\%$, we have

\[
2\sigma_y = 2 \frac{s}{\sqrt{n}} \approx 2 \frac{5}{\sqrt{200}} = \frac{2(5.6)}{\sqrt{200}} = .79
\]

8.20 The value .54 is a point estimate of p. A two-standard-deviation bound on the error of estimation is

\[
2\sqrt{\frac{.54(1-.54)}{n}} = 2\sqrt{\frac{.294}{n}} = 2\sqrt{\frac{(1.54)(.46)}{1000}} = .03
\]

Note that $\bar{Y} = .51$. Thus we can conclude that a majority of individuals in this age group feel that religion is a very important part of their lives.
8.22 The point estimate for p is $\hat{p} = \frac{3}{5}$. The bound on the error of estimation is
\[
2\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 2\sqrt{\frac{(\frac{3}{5})(\frac{2}{5})}{192}} = .023
\]

8.36 Use the fact that $Z = \frac{Y - \mu}{\sigma} = Y - \mu$ has a standard normal distribution.
 a. The 95% confidence interval for μ is $(Y - 1.96, Y + 1.96)$ since
 \[
P(-1.96 \leq Z \leq 1.96) = .95
 \]
 \[
P(-1.96 \leq Y - \mu \leq 1.96) = .95
 \]
 \[
P(Y - 1.96 \leq \mu \leq Y + 1.96) = .95
 \]
 b. Since
 \[
P(Z \leq -1.645) = .05
 \]
 \[
P(Y - \mu \leq -1.645) = .05
 \]
 \[
P(\mu \geq Y + 1.645) = .05
 \]
 Hence $Y + 1.645$ is the 95% upper limit for μ.
 c. Similarly, $Y - 1.645$ is the 95% lower limit for μ.

8.42 a. $\hat{p} = \frac{268}{500} = .536$. Therefore, an approximate 98% confidence interval for p is
\[
\hat{p} \pm z_{.01}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = .536 \pm 2.33\sqrt{\frac{(.536)(.464)}{500}} = .536 \pm .052 \text{ or } (.484, .588).
\]
b. Since the interval does include $p = .51$, we cannot conclude that there is a difference in the graduation rates before and after Proposition 48.

8.44 The parameter to be estimated in this exercise is μ, the average number of days required for treatment of patients. The 95% confidence interval is approximately
\[
\bar{y} \pm z_{.025\sqrt{n}} \text{ or } 5.4 \pm 1.96\left(\frac{3.1}{\sqrt{500}}\right) \text{ or } 5.4 \pm .27 \text{ or } (5.13, 5.67)
\]

8.70 a. $n = 20$, $\bar{x} = 419$, $s = 57$. Then the 90% confidence interval for the mean SAT scores for urban high school seniors is
\[
\bar{y} \pm t_{.05\sqrt{n}}\left(\frac{s}{\sqrt{n}}\right)
\]
where $t_{.05}$ is based on $n - 1 = 19$ degrees of freedom. From the Appendix, this is $t_{.05} = 1.729$. Then the confidence interval is
\[
419 \pm 1.729\left(\frac{57}{\sqrt{50}}\right) = 419 \pm 22.04 = (396.96, 441.04).
\]
b. The interval does include 422. Thus 422 is a believable value for μ at the 90% confidence level. However, numbers such as 397, 410, and 441, for example, are also believable values for μ.

c. Given $n = 20$, $\bar{x} = 455$, $s = 69$, the 90% confidence interval for the mean mathematics SAT score is
\[
\bar{y} \pm t_{.05\sqrt{n}}\left(\frac{s}{\sqrt{n}}\right) = 455 \pm 1.729\left(\frac{69}{\sqrt{20}}\right) = 455 \pm 26.67 = (428.33, 481.67).
\]The interval does include 474. We would conclude, based on our 90% confidence interval, that the true mean mathematics SAT score is not different from 474.

8.74 For the $n = 12$ measurements given here, calculate $\Sigma y_i = 108$ and $\Sigma y_i^2 = 1426$. Then
\[
\bar{y} = \frac{\Sigma y_i}{12} = 9 \quad \text{and} \quad s^2 = \frac{\Sigma y_i^2 - (\Sigma y_i)^2}{11} = 41.2727
\]
The 90% confidence interval is then
\[
\bar{y} \pm t_{.05\sqrt{n}}\left(\frac{s}{\sqrt{n}}\right) = \pm 1.796\sqrt{\frac{41.2727}{12}} = 9 \pm 3.33 \text{ or } (5.67, 12.33).
\]
8.76 a. Let $\mu_1 = \text{mean verbal score for engineering students}$ and $\mu_2 = \text{mean verbal score for language/literature students}$. Then the 95% confidence interval is

$$(\bar{y}_1 - \bar{y}_2) \pm t_{.025}\sqrt{\frac{S_p^2}{n_1} + \frac{1}{n_2}}$$

where $t_{.025} = 2.048$ with 28 degrees of freedom. Then,

$$S_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2} = \frac{14(42)^2 + 14(45)^2}{28} = 1894.5$$

and the confidence interval is

$$446 - 534 \pm 2.048\sqrt{1894.5\left(\frac{1}{15} + \frac{1}{15}\right)} = -88 \pm 32.55 = (-120.55, -55.45)$$

b. Similar to part a. Let $\mu_1 = \text{mean math score for engineering students}$ and $\mu_2 = \text{mean math score for language/literature students}$. First, calculate

$$S_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2} = \frac{14(57)^2 + 14(52)^2}{28} = 2976.5$$

Then the interval is

$$548 - 517 \pm 2.048\sqrt{2976.5\left(\frac{1}{15} + \frac{1}{15}\right)} = 31 \pm 40.80 = (-9.80, 71.80)$$

c. The 95% confidence intervals indicate that a significant difference exists in the mean verbal scores for students in engineering and language/literature (since both endpoints of the interval are negative). However, the other interval does not indicate that a significant difference exists in the mean math scores for students in engineering and language/literature, since 0 is in the interval.

d. We assume that the verbal (math) scores for the two groups are randomly and independently selected from two normal distributions with common variance.