Practice Final Exam: Statistical Inference

Wed Apr 24

1. Let $X_{j} \sim \operatorname{Ex}(\theta)$ be independent exponentially-distributed random variables, each with density function

$$
\begin{equation*}
f(x \mid \theta)=\theta e^{-\theta x}, \quad x>0, \tag{1}
\end{equation*}
$$

and answer the following questions.
a. Find the posterior distribution for θ and the posterior mean $\mathrm{E}[\theta \mid X]$ for n observations x_{1}, \ldots, x_{n}, using a Gamma prior distribution $\theta \sim \mathrm{Ga}(\alpha, \lambda)$.
b. Find the Jeffreys' prior $\pi_{J}(d \theta)$, the posterior distribution for θ, and the posterior mean $\mathrm{E}_{J}[\theta \mid X]$.
2. With the same data and model as above, and with a single observation $(n=1)$ of $X_{1}=x=0.10$,
a. Find an exact one-sided 90% confidence interval $I=\left[0, R_{x}\right]$ so that $\mathrm{P}[\theta \in I \mid \theta]=0.90$ for every $\theta>0$.
b. Perform a significance test of the hypothesis $H_{0}: \theta \leq 1$ against the alternative $H_{1}: \theta>1$. Find the P -value and report whether or not to reject the hypothesis at level $\alpha=.05$.
3. Once again with the same exponential model as above, verify that, for any $n \geq 1$, the statistics $T_{1}(X)=\sum_{j \leq n} X_{j}$ and $T_{2}(X)=\min _{j \leq n} X_{j}$ have the distributions $T_{1} \sim \mathrm{Ga}(n, \theta)$ and $T_{2} \sim \mathrm{Ex}(n \theta)$, respectively. Which of these would be a better basis for inference about θ ? Why?
4. Yet again let $X_{j} \sim \operatorname{Ex}(\theta)$ be independent exponentially-distributed random variables for $j \leq n$, and set $\mu=\mathrm{E}\left[X_{j} \mid \theta\right]=1 / \theta$; one could write the model as

$$
\begin{equation*}
f(x \mid \mu)=\mu^{-1} e^{-x / \mu}, \quad x>0 \tag{2}
\end{equation*}
$$

Please answer the following questions.
a. For the improper uniform distribution $\pi(d \theta)=d \theta$, find the posterior distribution for θ and the derived posterior distribution for $\mu=1 / \theta$.
b. For the improper uniform distribution $\pi(d \mu)=d \mu$, find the posterior distribution for μ and the derived posterior distribution for $\theta=1 / \mu$. Comment on the relation to 4a) above.
c. Find the Jeffreys prior distribution $\pi_{J}(d \mu)$ and the Jeffreys posterior distribution for for μ and the derived posterior distribution for $\theta=1 / \mu$. Comment on the relationship to your answer 1 b).
5. Let $X \sim \operatorname{Bi}(n, \theta)$ for $\theta \in \Theta=\left\{\frac{1}{2}, \frac{2}{3}\right\}$.
a. Find the posterior odds ratio $\mathrm{P}\left[\left.\theta=\frac{1}{2} \right\rvert\, X\right] / \mathrm{P}\left[\left.\theta=\frac{2}{3} \right\rvert\, X\right]$, as a function of the observed data $X=x$ and the prior odds ratio $\omega \equiv \mathrm{P}\left[\theta=\frac{1}{2}\right] / \mathrm{P}\left[\theta=\frac{2}{3}\right]$.
b. With prior odds ratio $\omega=1$, give the posterior probability of the hypothesis $H_{0}: \theta=\frac{1}{2}$ on the basis of an observed $x=8$ with $n=10$.
c. Find the observed significance level (P-value) for a test of this same hypothesis. Would you accept or reject at level $\alpha=.05 ?$

