Practice Final Exam: Statistical Inference Wed Apr 24

1. Let $X_j \sim \mathsf{Ex}(\theta)$ be independent exponentially-distributed random variables, each with density function

$$f(x \mid \theta) = \theta \, e^{-\theta \, x}, \qquad x > 0, \tag{1}$$

and answer the following questions.

- a. Find the posterior distribution for θ and the posterior mean $\mathsf{E}[\theta \mid X]$ for *n* observations x_1, \ldots, x_n , using a Gamma prior distribution $\theta \sim \mathsf{Ga}(\alpha, \lambda)$.
- b. Find the Jeffreys' prior $\pi_J(d\theta)$, the posterior distribution for θ , and the posterior mean $\mathsf{E}_J[\theta \mid X]$.
- 2. With the same data and model as above, and with a single observation (n = 1) of $X_1 = x = 0.10$,
 - a. Find an exact one-sided 90% confidence interval $I = [0, R_x]$ so that $\mathsf{P}[\theta \in I \mid \theta] = 0.90$ for every $\theta > 0$.
 - b. Perform a significance test of the hypothesis $H_0: \theta \leq 1$ against the alternative $H_1: \theta > 1$. Find the P-value and report whether or not to reject the hypothesis at level $\alpha = .05$.
- 3. Once again with the same exponential model as above, verify that, for any $n \ge 1$, the statistics $T_1(X) = \sum_{j \le n} X_j$ and $T_2(X) = \min_{j \le n} X_j$ have the distributions $T_1 \sim \mathsf{Ga}(n, \theta)$ and $T_2 \sim \mathsf{Ex}(n\theta)$, respectively. Which of these would be a better basis for inference about θ ? Why?

- STA 215
 - 4. Yet again let $X_j \sim \mathsf{Ex}(\theta)$ be independent exponentially-distributed random variables for $j \leq n$, and set $\mu = \mathsf{E}[X_j \mid \theta] = 1/\theta$; one could write the model as

$$f(x \mid \mu) = \mu^{-1} e^{-x/\mu}, \qquad x > 0.$$
(2)

Please answer the following questions.

- a. For the improper uniform distribution $\pi(d\theta) = d\theta$, find the posterior distribution for θ and the derived posterior distribution for $\mu = 1/\theta$.
- b. For the improper uniform distribution $\pi(d\mu) = d\mu$, find the posterior distribution for μ and the derived posterior distribution for $\theta = 1/\mu$. Comment on the relation to 4a) above.
- c. Find the Jeffreys prior distribution $\pi_J(d\mu)$ and the Jeffreys posterior distribution for for μ and the derived posterior distribution for $\theta = 1/\mu$. Comment on the relationship to your answer 1b).
- 5. Let $X \sim \mathsf{Bi}(n, \theta)$ for $\theta \in \Theta = \{\frac{1}{2}, \frac{2}{3}\}.$
 - a. Find the posterior odds ratio $\mathsf{P}[\theta = \frac{1}{2} \mid X]/\mathsf{P}[\theta = \frac{2}{3} \mid X]$, as a function of the observed data X = x and the prior odds ratio $\omega \equiv \mathsf{P}[\theta = \frac{1}{2}]/\mathsf{P}[\theta = \frac{2}{3}]$.
 - b. With prior odds ratio $\omega = 1$, give the posterior probability of the hypothesis H_0 : $\theta = \frac{1}{2}$ on the basis of an observed x = 8 with n = 10.
 - c. Find the observed significance level (P-value) for a test of this same hypothesis. Would you accept or reject at level $\alpha = .05$?