Homework 4

Due: Friday 2:00pm, Feb 28, 2003

- **0.** Turn in the simulation study report from Lab5.
- 1. 6.52
- 2. 7.32 (Take a look of example 7.11(c) in the textbook. Remember to use continuity correction in the approximation)
- **3.** The joint probability distribution p(x,y) is given by

$$p(-1,0) = p(0,-1) = p(0,1) = p(1,0) = 1/4.$$

Show that the correlation between x and y is zero, but x and y are not independent.

Hint: To show that x and y are not independent, it is enough to show that there exists a pair (x_0, y_0) such that $p(x_0, y_0) \neq p_x(x_0)p_y(y_0)$.

- **4.** Annie and Alvie have agreed to meet between 5pm and 6pm for dinner at Great Hall. Let x = Annie's arrival time and y = Alvie's arrival time. Suppose x and y are independent with each uniformly distributed on the interval [5, 6].
- (a) What is the joint pdf of x and y?
- (b) What is the probability that they both arrive between 5:15 and 5:45?
- (c) If the first one to arrive will wait only 10 min before leaving to eat elsewhere, what is the probability that they have dinner at Great Hall?

Hint: The event of interest is $A = \{(x, y) : |x - y| \le 1/6\}$.

5. Two components of a minicomputer have the following joint pdf for their useful lifetime x and y:

$$f(x,y) = \begin{cases} xe^{-x(1+y)} & x \ge 0 \text{ and } y \ge 0\\ 0 & \text{otherwise} \end{cases}$$

- (a) What is the probability that the lifetime x of the first component exceeds 3?
- (b) Are x and y independent? Explain.

Hint: (1) First calculate the marginal pdf's of random variables x and y, then check whether the joint pdf f(x, y) is equal to the product of two marginals.

(2) When you calculate the marginal density of y, you will encounter a integration like this form: $\int_0^\infty x^{\alpha-1} e^{-x/\beta} dx$, which is equal to

$$\beta^{\alpha}\Gamma(\alpha)\int_{0}^{\infty}\frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta}dx=\beta^{\alpha}\Gamma(\alpha).$$

Here we use the fact that the function inside the integral is a $Gamma(\alpha, \beta)$ density function, therefore the integral is equal 1.

- (3) $\Gamma(n+1) = n!$, therefore, $\Gamma(2) = 1$.
- **6.** (Let's redo the following problem from the exam.) Consider a system consisting of two components as in the figure below.

The system works if either 1 or 2 works. Suppose the lifetime of each component, measured in hours, is a random variable x_i , i = 1, 2, with density function

$$f_{x_i}(x) = \begin{cases} \frac{1}{\beta_i} e^{-x/\beta_i}, & \text{if } x \ge 0; \\ 0, & \text{if } x < 0. \end{cases}$$

where $\beta_1 = 2$ hours and $\beta_2 = 1.5$ hours and assume that the components are independent.

- (a) Let t =the lifetime of the system. Find the density function of the random variable t.
- (b) Calculate the probability that the system will operate for more than 6 hours, using the density function calculated at (a).

Hint: Use the cumulative distribution function method. First calculate the probability of the event $\{t \leq t_0\}$ and then differentiate.