Homework 5

Due: Friday 2:00pm, Mar 7, 2003

- **0.** Turn in the lab report for Lab 6.
- 1.8.8
- **2.** 8.9
- **3.** Let y_1, y_2, \ldots, y_n be uniformly distributed on the interval 0 to θ . Recall that in class we show that the MLE of θ is $\hat{\theta} = \max(y_i)$.
- (a) Let $w = max(y_i)$. Find the density function of w.

Hint: Use the fact that $w \leq w_0$ if and only if each $y_i \leq w_0$ to derive the CDF of w.

- (b) Use the result in (a) to show that the MLE for θ is biased.
- (c) Propose an unbiased estimator for θ .

Hint: Try the moment estimator.

- **4.** 8.17
- 5. n=100 random samples of water from a fresh water lake were taken and the calcium concentration (milligrams per liter) measured. A 95% CI on the mean calcium concentration is $0.49 \le \mu \le 0.82$.
- (a) Would a 99% CI calculated from the same sample data been longer or shorter?
- (b) Consider the following statement: There is a 95% chance that μ is between 0.49 and 0.82. Is this statement correct? Explain your answer.
- 6. The life in hours of a 75-watt light bulb is known to be normally distributed with $\sigma=25$ hours. A random sample of 20 bulbs has a mean life of $\bar{y}=1014$ hours.
- (a) Construct a 95% CI on the mean life.
- (b) Suppose we wanted the total width of the CI on mean life to be six hours at 95% confidence. What sample size should be used?