Complications in Using MLE

- Maximum occurs at a discontinuous point.

 Example: Suppose \(y_1, \ldots, y_n \sim \text{Unif}(0, \theta) \). Find the MLE of \(\theta \).

\[
L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta}1\{0 \leq y_i \leq \theta\} = \frac{1}{\theta^n}1\{\min(y_i) \geq 0\}1\{\max(y) \leq \theta\} = \begin{cases} 0 & \theta < \max(y_i) \\ \frac{1}{\theta^n} & \theta \geq \max(y_i) \end{cases}
\]

So \(\hat{\theta} = \arg\max_{\theta} L(\theta) = \max(y_i) \).

\(\hat{\theta} = \max y_i \) is biased. Why?

- Close-form solution does not exist

 Example: Suppose \(y_1, \ldots, y_n \sim \text{Gamma}(\alpha, \beta) \). Find the MLE.

Confidence Interval

- **Aim:** How to use the sample to calculate two numbers that define an interval that will enclose the unknown parameter with certain probability (confidence).

 - The resulting random interval is called a confidence interval.

 - The probability that the interval contains the unknown parameter is called its confidence coefficient.

\[
P(\text{LCL} \leq \theta \leq \text{UCL}) = 1 - \alpha
\]

\(\alpha \) is usually small, for example, 5% or 2.5%.

LCL \((y_1, \ldots, y_n)\): lower confidence limit

UCL \((y_1, \ldots, y_n)\): upper confidence limit
Case 1: Normal with Known Variance

Suppose \(\hat{\mu} \sim N(\mu, \sigma^2) \) with \(\sigma^2 \) known.

(1) Define (pivotal statistic)
\[
z = \frac{\hat{\mu} - \mu}{\sigma} \sim N(0, 1).
\]

(2) Locate values \(z_{\alpha/2} \) and \(-z_{\alpha/2} \) that place a probability of \(\alpha/2 \) in each tail of \(N(0, 1) \). For example, \(z_{0.025} = 1.96 \).

\[
1 - \alpha = P(-z_{\alpha/2} \leq z \leq z_{\alpha/2})
= P(-z_{\alpha/2} \leq \frac{\hat{\mu} - \mu}{\sigma} \leq z_{\alpha/2})
= P(-z_{\alpha/2} \sigma \leq \hat{\mu} - \mu \leq z_{\alpha/2} \sigma)
= P(\hat{\mu} - z_{\alpha/2} \sigma \leq \mu \leq \hat{\mu} + z_{\alpha/2} \sigma)
\]

Theorem 8.2 Let \(\hat{\mu} \sim N(\mu, \sigma^2) \). Then a \((1 - \alpha)100\% \) confidence interval for \(\mu \) is
\[
\hat{\mu} - z_{\alpha/2} \sigma \text{ to } \hat{\mu} + z_{\alpha/2} \sigma
\]

Example: ASTM Standard E23 defines standard test methods for notched bar impact testing of metallic materials. The Charpy V-notch(CVN) technique measures impact energy and is often used to determine whether or not a material experiences a ductile-to-brittle transition with decreasing temperature. Ten measurements of impact energy \((J) \) on specimens of A238 steel cut at \(60^\circ \)C are as follows: 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2 and 64.3. Assume that impact energy is normally distributed with \(\sigma = 1J \).

Find a 95% CI for \(\mu \), the mean impact energy.
\[
\bar{y} = \bar{y} \sim N(\mu, \sigma^2/n)
\]
\[
\begin{align*}
n &= 10, \quad \sigma = 1, \quad \alpha/2 = z_{2.5\%} = 1.96 \\
1.96 \frac{1}{10} &\leq \mu \leq 1.96 \frac{1}{10} + z_{2.5\%}
\end{align*}
\]
64.46 \(\frac{1}{10} \leq \mu \leq 64.46 + \frac{1}{10} \)
63.84 \(\leq \mu \leq 65.08 \)

How many specimens must be tested to ensure that the 95% CI of \(\mu \) has a length of at most 1.0\(J \)?
\[
n = \left[\frac{1.96}{0.5} \right]^2 = 15.37.
\]
Interpreting a CI

• Can we conclude: The true mean μ is within the interval (63.84, 65.08) with probability 0.95? — NO

• The statement $63.84 \leq \mu \leq 65.08$ is either correct (true with probability 1) or incorrect (false with probability 1).

• Remember that a CI is a random interval and the correct interpretation of a $100(1 - \alpha)$% CI should depend on the relative frequency view of probability.

• We conclude:
 If we were to repeatedly collect a sample of size n and construct a 95% CI for each sample, then we expect 95% of the intervals to enclose the true parameter μ.

```matlab
m=20; n=10;
y = normrnd(0, 0.5, m,n);
y_mean = mean(y,2);
e = norminv(0.95)*0.5/sqrt(n)*ones(m,1)
errorbar(1:m, y_mean, e);
h = line([1, m], [0, 0]);
set(h, 'color', [1 0 0]);

LCL = y_mean - e;
UCL = y_mean + e;
s = sum(LCL > 0) + sum(UCL < 0)
ans =
  2
```
• If \(\bar{y} \) is the sample mean of a random sample of size \(n \) from \(N(\mu, \sigma^2) \), the \((1 - \alpha)100\%\) CI is

\[
\bar{y} - z_{\alpha/2}\sigma/\sqrt{n} \leq \mu \leq \bar{y} + z_{\alpha/2}\sigma/\sqrt{n}
\]

• The length of the CI is equal to \(2z_{\alpha/2}\sigma/\sqrt{n}\).

• What's the relationship between the length of a CI and
 • the confidence coefficient \((1 - \alpha)100\%?\)
 • the sample size \(n\)?

Q: How many sample size we should choose in order to have the length of CI less than \(l_0\).

\[
2z_{\alpha/2}\sigma/\sqrt{n} \leq l_0
\]

\[
n \geq \left(\frac{z_{\alpha/2}\sigma}{l_0/2}\right)^2
\]

Sampling Dist Related to Normal

A random sample \(y_1, y_2, \ldots, y_n\) is drawn from \(N(\mu, \sigma^2)\).

Sample mean \(\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i\)

Sample var \(s^2 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n - 1}\)

• Recall that \(\chi^2(\nu) = z_1^2 + z_2^2 + \ldots + z_\nu^2\), where each \(z_i \sim N(0,1)\).

• \((n - 1)s^2/\sigma^2 \sim \chi^2(n - 1)\)

• Let \(z\) be a standard normal and \(\chi^2\) be a chi-square with \(\nu\) degrees of freedom. If \(z\) and \(\chi^2\) are independent, then

\[
t = \frac{z}{\sqrt{\chi^2/\nu}}
\]

has a **Student's t distribution** with \(\nu\) degree of freedom.
Case 2: Normal with Unknown Variance

(Example 8.6) Let \bar{y} and s^2 be the sample mean and variance based on a random sample of n normal(μ, σ^2) observations

Start with the pivotal statistic

$$ t = \frac{\bar{y} - \mu}{s/\sqrt{n}} = \frac{\bar{y} - \mu}{\frac{s}{\sqrt{n}}} = \frac{\bar{y} - \mu}{\sqrt{(n-1)s^2/(n-1)}} $$

\sim Student’s t distribution

$$ 1 - \alpha $$

$$ = P(-t_{\alpha/2,n-1} \leq t \leq t_{\alpha/2,n-1}) $$

$$ = P(-t_{\alpha/2,n-1} \leq \frac{\bar{y} - \mu}{s/\sqrt{n}} \leq t_{\alpha/2,n-1}) $$

$$ = P(\bar{y} - t_{\alpha/2,n-1}(\frac{s}{\sqrt{n}}) \leq \mu \leq \bar{y} + t_{\alpha/2,n-1}(\frac{s}{\sqrt{n}})) $$

Take a look of Example 8.7