# Homework 8 Solution

Sta113, ISDS

April 18, 2003

Total 15 points.

## 11.2

2 points

• The line passes through the point (0,1), indicating that  $\beta_0 = 1$ . And it also passes through the point (2,3), so  $3 = 1 + 2\beta_1$ . We get  $\beta_1$  and hence the equation of the line.

## 11.56

9 points

- The plot is shown on Figure 1.
- $\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}} = -0.0533, \ \hat{\beta}_0 = \overline{y} \hat{\beta}_1 \overline{x} = -13.622$
- For testing in d, we perform the test,  $H_0: \beta_1 = 0$  vs  $H_a: \beta_1 \neq 0$ .
- For e, the form of confidence interval is  $\hat{\beta}_1 \pm t_{\alpha/2} s / \sqrt{SS_{xx}}$ . Hence  $-0.053 \pm 0.015$ , or (-0.068, -0.038) for 90% confidence level. For every one degree increase in temperature, we are 90% confident that the change in mean proportion of impurity passing through helium will be between -0.068 and -0.038.
- For f,  $r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} = -0.923$ .

- For g,  $r^2 = 0.825$ . 82.5% of the total sum of squares of deviations of the proportion of impurities about their mean can be attributed to the linear relationship between the proportion of impurities and temperature.
- For h, the 99% prediction interval is  $\hat{y} \pm t_{\alpha/2} s \sqrt{1 + \frac{1}{n} + \frac{(x-\overline{x})^2}{SS_{xx}}} = 0.769 \pm 0.474$
- For i, the 99% confidence interval is  $\hat{y} \pm t_{\alpha/2} s \sqrt{1 + \frac{(x-\overline{x})^2}{SS_{xx}}} = 0.769 \pm 0.150$



Figure 1: Scatter Plot in Problem 11.56

## 11.57

#### 2 points

• This model is statistically useful. 1. The t test for  $H_0$ : Coefficient of Record = 0 shows that  $H_0$  can be rejected; 2. 98.3% of the total sum of squares of deviations of the number of Disk I/O's about their mean can be attributed to the linear relationship between the number of Disk I/O's and number of the records. 3. The ANOVA table with a large F-value (800.83) also shows that this model is useful.

## 11.59

#### 2 points

• a. Use linear model  $y = \beta_0 + \beta_1 x + \epsilon$  to fit the data. And using Matlab, we can get the estimation,  $\hat{y} = 6.514 + 10.83x$ .

• The hypothesis testing is  $H_0: \beta_1 = 0$  vs  $H_a: \beta_1 \neq 0$ . The t statistics is 6.34 with 8 degree of freedom. We reject null hypothesis.