Analysis of Variance Model

- Let Y_{ij} = measured height of plant i in treatment group j, $j = 1, 2, 3, 4$. Treatment groups are “factors”.
- Let \bar{Y}_j = calculated average of plant heights in group j.
- ANOVA model: $Y_{ij} = \mu_j + \varepsilon_{ij}$
- Unknown parameters: group means $\mu_1, \mu_2, \mu_3, \mu_4$ and single standard deviation σ.
- ANOVA hypothesis and inference
- Splus output:

```
Df  Sum.Sq   M.Sq  F  Pr(F)
Betw   3   100.65  33.55 12.08 0.00062
With  12    33.33   2.78
```

Regression Model

- Let Y = random height of plant (random, response variable)
- Let X = number of nematodes given to each plant. fixed, explanatory
 Explanatory variable X measured at (fixed) values of 0, 1000, 5000 or 10,000.
- Linear Regression Model: probability model relating Y to a treatment level X, which is now treated as continuous

$$Y_{ij} = \beta_0 + \beta_1 X_j + \varepsilon$$ \hspace{1cm} (1)

- Unknown parameters: β_0, β_1 and σ
- Assumptions about ε

- Line of Means:

$$\mu \{ Y_j | X_j \} = \beta_0 + \beta_1 X_j$$ \hspace{1cm} (2)

- Assumptions
- How to find the best fitting values of β_0, β_1

Regression estimation

- Estimated mean function

$$\hat{\mu} \{ Y_j | X_j \} = \hat{\beta}_0 + \hat{\beta}_1 X_j$$ \hspace{1cm} (3)

- Let X be measured in 1000’s of nematodes. $X=0, 1, 5, 10$. From Splus, for the nematode data this is:

$$\hat{\mu} \{ Y | X \} = 10.33 - 0.6X$$ \hspace{1cm} (4)

- What are the properties of $\hat{\beta}_0, \hat{\beta}_1$?
Presentation of Regression Results

\[\hat{Y} = 10.33 + (-573.79 \times X) \]

(0.69) (122.76)

\[\hat{\sigma} = 1.93 \text{ (14 df)} \]

Why can’t we just estimate \(\hat{\sigma} \) with \(SD(Y) \)?

Hypothesis tests for \(\beta_0 \) and \(\beta_1 \)

- Does \(X \) contribute any information for prediction of \(Y \)?

 Test: \(H_0: \beta_1 = 0 \) vs. \(H_A: \beta_1 \neq 0 \)

 (or \(H_A: \beta_1 > 0 \))

 \[\frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} \sim t_{n-2} \] (5)

- Tests regarding \(\beta_0 \):

 \[\frac{\hat{\beta}_0 - \beta_0}{SE(\hat{\beta}_0)} \sim t_{n-2} \] (6)