This measure on \(\mathcal{F} \) is the required extension, because by (3.7) it agrees with \(P \) on \(\mathcal{F}_0 \).

Uniqueness and the \(\pi\)-\(\lambda \) Theorem

To prove the extension in Theorem 3.1 is unique requires some auxiliary concepts. A class \(\mathcal{P} \) of subsets of \(\Omega \) is a \(\pi\)-system if it is closed under the formation of finite intersections:

\[
(\pi) \quad A, B \in \mathcal{P} \text{ implies } A \cap B \in \mathcal{P}.
\]

A class \(\mathcal{L} \) is a \(\lambda\)-system if it contains \(\Omega \) and is closed under the formation of complements and of finite and countable disjoint unions:

\[
(\lambda_1) \quad \Omega \in \mathcal{L};
(\lambda_2) \quad A \in \mathcal{L} \text{ implies } A^c \in \mathcal{L};
(\lambda_3) \quad A_1, A_2, \ldots, \in \mathcal{L} \text{ and } A_n \cap A_m = \emptyset \text{ for } m \neq n \text{ imply } \bigcup_n A_n \in \mathcal{L}.
\]

Because of the disjointness condition in (\(\lambda_3 \)), the definition of \(\lambda\)-system is weaker (more inclusive) than that of \(\sigma\)-field. In the presence of (\(\lambda_1 \)) and (\(\lambda_2 \)), which imply \(\emptyset \in \mathcal{L} \), the countably infinite case of (\(\lambda_3 \)) implies the finite one.

In the presence of (\(\lambda_1 \)) and (\(\lambda_3 \)), (\(\lambda_2 \)) is equivalent to the condition that \(\mathcal{L} \) is closed under the formation of proper differences:

\[
(\lambda'_2) \quad A, B \in \mathcal{L} \text{ and } A \subset B \text{ imply } B - A \in \mathcal{L}.
\]

Suppose, in fact, that \(\mathcal{L} \) satisfies (\(\lambda_3 \)) and (\(\lambda'_2 \)). If \(A, B \in \mathcal{L} \) and \(A \subset B \), then \(\mathcal{L} \) contains \(B^c \), the disjoint union \(A \cup B^c \), and its complement \((A \cup B^c)^c = B - A \). Hence (\(\lambda_3 \)). On the other hand, if \(\mathcal{L} \) satisfies (\(\lambda_1 \)) and (\(\lambda'_2 \)), then \(A \in \mathcal{L} \) implies \(A^c = \Omega - A \in \mathcal{L} \). Hence (\(\lambda_3 \)).

Although a \(\sigma\)-field is a \(\lambda\)-system, the reverse is not true (in a four-point space take \(\mathcal{L} \) to consist of \(\emptyset, \Omega \), and the six two-point sets). But the connection is close:

Lemma 6. A class that is both a \(\pi\)-system and a \(\lambda\)-system is a \(\sigma\)-field.

Proof. The class contains \(\Omega \) by (\(\lambda_1 \)) and is closed under the formation of complements and finite intersections by (\(\lambda_2 \)) and (\(\pi \)). It is therefore a field. It is a \(\sigma\)-field because if it contains sets \(A_n \), then it also contains the disjoint sets \(B_n = A_n \cap A_1^c \cap \cdots \cap A_{n-1}^c \) and by (\(\lambda_3 \)) contains \(\bigcup_n A_n = \bigcup_n B_n \).
Many uniqueness arguments depend on Dynkin's π-λ theorem:

Theorem 3.2. If \mathcal{P} is a π-system and \mathcal{L} is a λ-system, then $\mathcal{P} \subseteq \mathcal{L}$ implies $\sigma(\mathcal{P}) \subseteq \mathcal{L}$.

Proof. Let \mathcal{L}_0 be the λ-system generated by \mathcal{P}—that is, the intersection of all λ-systems containing \mathcal{P}. It is a λ-system, it contains \mathcal{P}, and it is contained in every λ-system that contains \mathcal{P} (see the construction of generated σ-fields, p. 21). Thus $\mathcal{P} \subseteq \mathcal{L}_0 \subseteq \mathcal{L}$. If it can be shown that \mathcal{L}_0 is also a π-system, then it will follow by Lemma 6 that it is a σ-field. From the minimality of $\sigma(\mathcal{P})$ it will then follow that $\sigma(\mathcal{P}) \subseteq \mathcal{L}_0$, so that $\mathcal{P} \subseteq \sigma(\mathcal{P}) \subseteq \mathcal{L}_0 \subseteq \mathcal{L}$. Therefore, it suffices to show that \mathcal{L}_0 is a π-system.

For each A, let \mathcal{L}_A be the class of sets B such that $A \cap B \in \mathcal{L}_0$. If A is assumed to lie in \mathcal{P}, or even if A is merely assumed to lie in \mathcal{L}_0, then \mathcal{L}_A is a λ-system: Since $A \cap \Omega = A \in \mathcal{L}_0$ by the assumption, \mathcal{L}_A satisfies (\lambda_1). If $B_1, B_2 \in \mathcal{L}_A$ and $B_1 \subseteq B_2$, then the λ-system \mathcal{L}_0 contains $A \cap B_1$ and $A \cap B_2$ and hence contains the proper difference $(A \cap B_2) - (A \cap B_1) = A \cap (B_2 - B_1)$, so that \mathcal{L}_A contains $B_2 - B_1$: \mathcal{L}_A satisfies (\lambda_2). If B_n are disjoint \mathcal{L}_A-sets, then \mathcal{L}_0 contains the disjoint sets $A \cap B_n$ and hence contains their union $A \cap (\bigcup_n B_n)$: \mathcal{L}_A satisfies (\lambda_3).

If $A \in \mathcal{P}$ and $B \in \mathcal{P}$, then (\mathcal{P} is a π-system) $A \cap B \in \mathcal{P} \subseteq \mathcal{L}_0$, or $B \in \mathcal{L}_A$. Thus $A \in \mathcal{P}$ implies $\mathcal{P} \subseteq \mathcal{L}_A$, and since \mathcal{L}_A is a λ-system, minimality gives $\mathcal{L}_0 \subseteq \mathcal{L}_A$.

Thus $A \in \mathcal{P}$ implies $\mathcal{L}_0 \subseteq \mathcal{L}_A$, or, to put it another way, $A \in \mathcal{P}$ and $B \in \mathcal{L}_0$ together imply that $B \in \mathcal{L}_A$ and hence $A \in \mathcal{L}_B$. (The key to the proof is that $B \in \mathcal{L}_A$ if and only if $A \in \mathcal{L}_B$.) This last implication means that $B \in \mathcal{L}_0$ implies $\mathcal{P} \subseteq \mathcal{L}_B$. Since \mathcal{L}_B is a λ-system, it follows by minimality once again that $B \in \mathcal{L}_0$ implies $\mathcal{L}_0 \subseteq \mathcal{L}_B$. Finally, $B \in \mathcal{L}_0$ and $C \in \mathcal{L}_0$ together imply $C \in \mathcal{L}_B$, or $B \cap C \in \mathcal{L}_0$. Therefore, \mathcal{L}_0 is indeed a π-system.

Since a field is certainly a π-system, the uniqueness asserted in Theorem 3.1 is a consequence of this result:

Theorem 3.3. Suppose that P_1 and P_2 are probability measures on $\sigma(\mathcal{P})$, where \mathcal{P} is a π-system. If P_1 and P_2 agree on \mathcal{P}, then they agree on $\sigma(\mathcal{P})$.

Proof. Let \mathcal{L} be the class of sets A in $\sigma(\mathcal{P})$ such that $P_1(A) = P_2(A)$. Clearly $\Omega \in \mathcal{L}$. If $A \in \mathcal{L}$, then $P_1(A^c) = 1 - P_1(A) = 1 - P_2(A) = P_2(A^c)$, and hence $A^c \in \mathcal{L}$. If A_n are disjoint sets in \mathcal{L}, then $P_1(\bigcup_n A_n) = \sum_n P_1(A_n) = \sum_n P_2(A_n) = P_2(\bigcup_n A_n)$, and hence $\bigcup_n A_n \in \mathcal{L}$. Therefore \mathcal{L} is a λ-system. Since by hypothesis $\mathcal{P} \subseteq \mathcal{L}$ and \mathcal{P} is a π-system, the π-λ theorem gives $\sigma(\mathcal{P}) \subseteq \mathcal{L}$, as required.
Note that the \(\pi\lambda \) theorem and the concept of \(\lambda \)-system are exactly what are needed to make this proof work: The essential property of probability measures is countable additivity, and this is a condition on countable disjoint unions, the only kind involved in the requirement \(\lambda_\lambda \) in the definition of \(\lambda \)-system. In this, as in many applications of the \(\pi\lambda \) theorem, \(\mathcal{L} \subset \sigma (\mathcal{P}) \) and therefore \(\sigma (\mathcal{P}) = \mathcal{L} \), even though the relation \(\sigma (\mathcal{P}) \subset \mathcal{L} \) itself suffices for the conclusion of the theorem.

Monotone Classes

A class \(\mathcal{M} \) of subsets of \(\Omega \) is monotone if it is closed under the formation of monotone unions and intersections:

(i) \(A_1, A_2, \ldots \in \mathcal{M} \) and \(A_n \uparrow A \) imply \(A \in \mathcal{M} \);
(ii) \(A_1, A_2, \ldots \in \mathcal{M} \) and \(A_n \downarrow A \) imply \(A \in \mathcal{M} \).

Halmos's monotone class theorem is a close relative of the \(\pi\lambda \) theorem but will be less frequently used in this book.

Theorem 3.4. If \(\mathcal{F}_0 \) is a field and \(\mathcal{M} \) is a monotone class, then \(\mathcal{F}_0 \subset \mathcal{M} \) implies \(\sigma (\mathcal{F}_0) \subset \mathcal{M} \).

Proof. Let \(m (\mathcal{F}_0) \) be the minimal monotone class over \(\mathcal{F}_0 \)—the intersection of all monotone classes containing \(\mathcal{F}_0 \). It is enough to prove \(\sigma (\mathcal{F}_0) \subset m (\mathcal{F}_0) \); this will follow if \(m (\mathcal{F}_0) \) is shown to be a field, because a monotone field is a \(\sigma \)-field.

Consider the class \(\mathcal{S} = \{ A : A \in m (\mathcal{F}_0) \} \). Since \(m (\mathcal{F}_0) \) is monotone, so is \(\mathcal{S} \). Since \(\mathcal{F}_0 \) is a field, \(\mathcal{F}_0 \subset \mathcal{S} \), and so \(m (\mathcal{F}_0) \subset \mathcal{S} \). Hence \(m (\mathcal{F}_0) \) is closed under complementation.

Define \(\mathcal{S}_1 \) as the class of \(A \) such that \(A \cup B \in m (\mathcal{F}_0) \) for all \(B \in \mathcal{F}_0 \). Then \(\mathcal{S}_1 \) is a monotone class and \(\mathcal{F}_0 \subset \mathcal{S}_1 \); from the minimality of \(m (\mathcal{F}_0) \) follows \(m (\mathcal{F}_0) \subset \mathcal{S}_1 \).

Define \(\mathcal{S}_2 \) as the class of \(B \) such that \(A \cup B \in m (\mathcal{F}_0) \) for all \(A \in m (\mathcal{F}_0) \). Then \(\mathcal{S}_2 \) is a monotone class. Now from \(m (\mathcal{F}_0) \subset \mathcal{S}_1 \) it follows that \(A \in m (\mathcal{F}_0) \) and \(B \in \mathcal{F}_0 \) together imply that \(A \cup B \in m (\mathcal{F}_0) \); in other words, \(B \in \mathcal{F}_0 \) implies that \(B \in \mathcal{S}_2 \), thus \(\mathcal{F}_0 \subset \mathcal{S}_2 \); by minimality, \(m (\mathcal{F}_0) \subset \mathcal{S}_2 \), and hence \(A, B \in m (\mathcal{F}_0) \) implies that \(A \cup B \in m (\mathcal{F}_0) \). \(\blacksquare \)

Lebesgue Measure on the Unit Interval

Consider once again the unit interval \((0, 1] \) together with the field \(\mathcal{B}_0 \) of finite disjoint unions of subintervals (Example 2.2) and the \(\sigma \)-field \(\mathcal{B} = \sigma (\mathcal{B}_0) \) of Borel sets in \((0, 1] \). According to Theorem 2.2, (2.12) defines a probability measure \(\lambda \) on \(\mathcal{B}_0 \). By Theorem 3.1, \(\lambda \) extends to \(\mathcal{B} \), the extended \(\lambda \) being Lebesgue measure. The probability space \(((0, 1], \mathcal{B}, \lambda) \) will be the basis for much of the probability theory in the remaining sections of this chapter. A few geometric properties of \(\lambda \) will be considered here. Since the intervals in \((0, 1] \) form a \(\pi \)-system generating \(\mathcal{B} \), \(\lambda \) is the only probability measure on \(\mathcal{B} \) that assigns to each interval its length as its measure.