1 Outline

- \(R^2 \) in regression, definition of \(R^2_{adjusted} \)
- Polynomial regression
- Leverage, residuals and influence in regression

2 \(R^2 \)

\(R^2 \) cannot help with model goodness of fit, model adequacy, statistical significance of a regression, or need for transformation. Can provide a summary of tightness of fit, and sometimes, clarify practical significance.

3 Polynomial regression overview, Ch. 9

- Example of Koehn, 1978 regarding allele frequency as a function of distance from Southport, Conn.
- Research question: What are the genetic differences between lagoonal and oceanic populations? How are genetic differences affected by environmental variation? Theory that elevated temperatures or hypersalinity of a lagoon region might cause selective extinction of particular alleles with age and maintain a genetic gradient. (Planes et al., 1998, *Coral Reefs*)
- Used when (1) true response \(Y \) is a polynomial function or (2) when the true response function is unknown (or complex) and a polynomial function is a good approximation to the true function.
- As higher order terms are added, the curve becomes more complex and can fit a set of data increasingly well. At the same time, the residual mean square loses a degree of freedom.
- Retain lower powers of \(X \) up to the highest power considered. Higher order terms are viewed as providing refinements in the specification of the response function. If there is evidence that only a higher power of \(X \) relates meaningfully to \(Y \), while lower powers have no effect and no biological meaning, lower powers can be omitted.
- Often data are centered \((X - \bar{X})\) to reduce problems of multicollinearity among \(X \) terms of different powers.

4 Influence, Leverage and Residuals

1. Examination of bee pollen example. Parallel lines model regressing logit of proportion removed on log of time of duration and bee type (worker, queen).

2. Identifying outlying \(X \) observations: Leverage. How far is a given \(X \) from the other \(X \)'s? Plots identify points 1 and 36 as worthy of further examination.

3. Identifying outlying \(Y \) observations: Residuals.
 (a) Standardized residuals (studentized or “internally studentized”)
 (b) Externally studentized residuals

4. Identifying influential cases: Cook’s Distance, DFFITS, DFBETAS
(a) Cook’s Distance: What is the influence of the i^{th} case on the set of all fitted values?

(b) DFFITS: What is the influence of the i^{th} case on an individual \hat{Y}_i? (function of externally studentized residuals)

\[(\text{DFFITS})_i = \frac{\hat{Y}_i - \hat{Y}_{i(i)}}{\sqrt{\hat{\sigma}^2_{(i)} \times h_i}} \]

\[= (\text{ext. stud. res.})_i \times \sqrt{\frac{h_i}{1 - h_i}} \]

- An approximate number of standard deviations that \hat{Y}_i changes when the i^{th} case is removed.
- Rough rules: DFFITS > 1 of concern for small-medium datasets; DFFITS > $2 \sqrt{\frac{p}{n}}$ for large datasets.

(c) DFBETAS: What is the influence of the i^{th} case on each regression coefficient β_k?