Linear regression model: Relating two genes

- Straight line regression model:
 (dependent variable) response gene \(y \) (e.g., ER)
 (independent variable, explanatory variable) predictor gene \(x \) (e.g., ps2)
- Measurement error model: repeat values \(i = 1, \ldots, n \),
 - independent expression levels on \(n \) tumors
 \[y_i = \alpha + \beta x_i + \epsilon_i \]
- \(\epsilon_i \): independent errors (sampling, measurement, lack of fit)
- Model “explains” variability in response \(y \) “due to” \(x \)
- Bivariate data \((y_i, x_i)\) BUT focus is asymmetric: explaining \(y \) through \(x \)
- Non-causal, purely empirical
- Predictive validity: fit model and test in new cases
- Typical assumption: Gaussian (normally) distributed errors \(\epsilon \sim N(0, \sigma^2) \)
- Analysis and inference:
 - Estimate parameters \((\alpha, \beta, \sigma^2)\)
 - Assess model fit — adequate? good? if inadequate, how?
 - Explore implications: \(\beta, \beta x \)
 - Predict new (“future”) responses at new \(x_{n+1}, \ldots \)

Linear regression model: Least squares fitting

- For any chosen \(\alpha, \beta \),
 \[Q(\alpha, \beta) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 \]
 measures “fit” of chosen line \(\alpha + \beta x \) to response data
- Choose \(\hat{\alpha}, \hat{\beta} \) to minimise \(Q(\alpha, \beta) \)
- Least squares estimates (LSE)
- Fitted least squares line: \(\hat{y} = \hat{\alpha} + \hat{\beta} x \)

LSE formulae and interpretation:

- Sample variances and covariances \(s_x, s_y, s_{x,y} \)
 \[\hat{\beta} = \frac{s_{x,y}}{s_x}, \quad \hat{\alpha} = \bar{y} - \hat{\beta} \bar{x} \]
- Or
 \[\hat{\beta} = r_{x,y} \sqrt{\frac{s_y}{s_x}} \]
 \(\hat{\beta} \) is correlation coefficient corrected for relative scales of \(y : x \)
 - (so units of the “fitted line” \(\hat{\alpha} + \hat{\beta} x \) are on scale of \(y \))
- Same variability: \(s_y = s_x \) implies \(\hat{\beta} = r_{x,y} \)

Significance of fit, residuals, prediction

- See the more general framework of multiple regression models, in Note 3. The model here is a special case.