11.0 Contingency Tables

- Answer Questions
- More Exercises
- Contingency Tables
Recall the simple version of Bayes’ Rule:

Let A_1, \ldots, A_n be mutually exclusive and suppose that $P[A_1 \text{ or } A_2 \text{ or } \ldots \text{ or } A_n] = 1$. Then

$$P[A_1 | B] = \frac{P[B | A_1] \cdot P[A_1]}{\sum_{i=1}^{n} P[B | A_i] \cdot P[A_i]}.$$

This formula is due to the Rev. Thomas Bayes, 1763.
Suppose Karl Rove takes a lie detector test about outing CIA agent Valerie Plame. And suppose a lie detector is 92% accurate on truth tellers, but only 85% accurate on liers.

Also suppose that the leak had to come from one of five people, all of whom are equally suspect.

If Karl Rove denies leaking but the lie detector signals, then what is the probability that he was responsible for the leak?
Set $B=\{\text{signal}\}$, $A_1=\{\text{lie}\}$, $A_2=\{\text{truth}\}$.

$$P[\text{ lie } | \text{ signal }] =$$

$$\frac{P[\text{ signal } | \text{ lie }] \cdot P[\text{ lie }]}{P[\text{ signal } | \text{ lie }] \cdot P[\text{ lie }]+P[\text{ signal } | \text{ truth }] \cdot P[\text{ truth }]}$$

$$= (.85 \cdot .2)/[(.85 \cdot .2) + (1 - .92) \cdot (.8)]$$

$$= .726$$

Thus the guilty signal from the lie detector only increases the probability that Rove was the leak from $1/5$ to $.726$.
Mary goes to a fraternity party, meets a man and falls in love. But she was drunk, and on the following morning she is unable to remember the fraternity to which her true love belongs. But she does remember that he had computer equipment stacked on his bed.

She knows that only three fraternities had parties that night: Deltoid Deltoid, Omega Smegma, and Lambda Pi. She estimates that she had probability .4 of going to the Deltoid Deltoid party, probability .3 of going to the Omega Smegma party, and otherwise she went to the Lambda Pi party.

Mary knows that 10% of Deltoid Deltoid men have computer equipment on their beds, that 20% of Omega Smegma men have computer equipment, and that 90% of Lambda Pi men have computer equipment.

What is the probability that Mary’s true love is a Lamb-Pi?
We use Bayes’ Theorem. Set $A_1=\{\Lambda\Pi\}$, $A_2 = \{\Omega\Sigma\}$, $A_3 = \{ \Delta\Delta\Delta \}$, and $B=\{ \text{geek} \}$. Then

\[P[\Lambda\Pi|g] = \]

\[\frac{P[g|\Lambda\Pi] * P[\Lambda\Pi]}{P[g|\Lambda\Pi] * P[\Lambda\Pi] + P[g|\Omega\Sigma] * P[\Omega\Sigma] + P[g|\Delta\Delta\Delta] * P[\Delta\Delta\Delta]} \]

\[= (0.9 * 0.3) / [(0.9 * 0.3) + (0.2 * 0.3) + (0.1 * 0.4)] \]

\[= 0.73 \]

Thus the probability that Mary’s boyfriend is a Lamb-Pie is about 0.73.
A contingency table shows counts for two categorical variables. For example, you might classify a sample of people by gender and major, or by race and marital status, or by diet and health.

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>English</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>History</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
The Physician’s Health Study (1989) was a randomized, controlled, double-blind experiment. Half of 22071 men over 40 took an aspirin every other day, while half took a placebo.

<table>
<thead>
<tr>
<th></th>
<th>Heart Attack</th>
<th>No Heart Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspirin</td>
<td>104</td>
<td>10933</td>
</tr>
<tr>
<td>placebo</td>
<td>189</td>
<td>10845</td>
</tr>
</tbody>
</table>

The question is whether membership in the aspirin group is independent of whether one is in the heart attack group, or whether aspirin affects (lowers) the heart attack rate.
One way to assess whether or not treatment is independent of heart attack is to make a mosaic plot. In a mosaic plot, the size of the tiles is proportional to the count in the cell. If it looks like a window, one has perfect independence.
But no data set is really going to give you a perfect windowpane. Even if the two categories are independent, random chance will cause some variation.

For example, if you toss a coin to determine who gets a heart attack and who does not, then aspirin use is clearly unrelated to heart attack.

But we know that you are unlikely to get exactly equal numbers of heads for both groups. By chance, one or the other will have a slight excess of heart attacks.
We need some way to measure how unlikely the observed data are, if in fact aspirin use has nothing to do with heart attacks.

Determining whether or not an observed contingency table shows significant difference from independence is something we shall study later.

For now, we shall describe two ways of measuring the how far from independence a particular 2×2 contingency table is.

- Relative Risk
- Odds Ratio
To define these measures, consider the following 2×2 contingency table:

<table>
<thead>
<tr>
<th></th>
<th>Category 1</th>
<th>Category 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Type 2</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

The Relative Risk of Category 1 in Type 1 to Category 1 in Type 2 is

$$RR = \frac{A/(A + B)}{C/(C + D)}.$$

This is just the ratio of the proportion in Category 1 in the first row to the proportion in Category 1 in the second row.
The **Odds Ratio** is

\[OR = \frac{A/B}{C/D}. \]

This is the ratio of the odds of being in the Category 1 in the first row to the odds of being in Category 1 in the second row.

The **odds** are just the ratio of the proportion in group to the proportion in the other, where the sum of the proportions must add to 1. Thus odds of “2 to 1” mean that the first outcome is twice as likely as the second, or the chance of the first outcome is 2/3, while the chance of the second is 1/3.
In the case of aspirin data:

<table>
<thead>
<tr>
<th></th>
<th>Heart Attack</th>
<th>No Heart Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspirin</td>
<td>104</td>
<td>10933</td>
</tr>
<tr>
<td>placebo</td>
<td>189</td>
<td>10845</td>
</tr>
</tbody>
</table>

\[
RR = \frac{104/(104 + 10933)}{189/(189 + 10845)} = .55
\]

\[
OR = \frac{104/10933}{189/10845} = .546.
\]

It is important to arrange the table in order to get the “A” cell right—this will depend upon what question the problem is asking. You cannot count on this being done for you already.
If the mosaic plot is a perfect windowpane, then both the Relative Risk and the Odds Ratio equal to 1. But if either is much less than 1, that is strong evidence of dependence (i.e., aspirin helps).

If the first row people are more likely to be in the first column than second row people, then both Relative Risk and the Odds Ratio are greater than 1.

If the first row people are less likely to be in the first column than second row people, then both Relative Risk and the Odds Ratio are less than 1.

Thus one can tell whether aspirin hurts, helps, or is independent of heart attack.
As in our example, it often happens that both Relative Risk and the Odds Ratio have similar, but not identical, values.

Statisticians slightly prefer Relative Risk as a measure of dependence, since it is interpretable has the ratio of two probabilities.

For historical reasons, the Odds Ratio is often used in medicine and gambling. But it is slightly more difficult to interpret, at least for me.

For the aspirin example, could the observed odds ratio or relative risk be the result of a Simpson’s Paradox situation?