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1. Introduction

In Statistical Inference we observe the value x of a random variable or vector
X taking values in some space X , and try to learn about the probability
distribution from which X was drawn. We can always index the set of
possible distributions for X by elements θ from a set Θ. Usually X will
come from some parametric family (normal distributions, gamma, Poisson,
etc.), so that Θ will be a subset of R

d for some small integer d (often one
or two), but the formulation will allow us to consider even nonparametric
analysis where Θ might be a very large space, like all continuous unimodal
density functions on R.

We will always take X to have a probability density function (pdf) f(x | θ)
with respect to some arbitrary reference measure m(dx) on X , so that for
every suitable set A ⊂ X and function g : X → R,

P
θ[X ∈ A] =

∫

A

f(x | θ)m(dx) (1)

E
θ[g(X)] =

∫

X

g(x) f(x | θ)m(dx). (2)

Usually for us the space X where X takes its values will be either some
countable set like the integers Z or integer vectors Z

p, or else some interval or
other simple geometric set in Euclidean space R

p. For discrete distributions
we can always take m(dx) to be the so-called counting measure that assigns
m(A) = the number of points in A, so that f(x | θ) is just the probability
mass function and the integrals in (1) and (2) are just sums. For absolutely
continuous distributions we can let m(dx) = dx be the usual (Lebesgue)
volume measure in Euclidean space, so that f(x | θ) is just the usual pdf
and the integrals in (1) and (2) are just Riemann integrals.
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Probability theory (as taught in Duke’s STA205 or, less formally, in STA213
or STA104=MTH 135) tells us how to calculate P

θ[X ∈ A] and E
θ[g(X)] for

various families of distributions f(x | θ), like normal or binomial or expo-
nential or Poisson distributions, when we know the parameters θ. Statis-

tical Inference is concerned with the inverse problem— after observing
X = x ∈ X , try to learn about θ ∈ Θ. In probability there is usually only
one distribution under study (so there isn’t any need for the θ superscript
on the expectation symbol E

θ or probability symbol P
θ), but many possible

values x for X, but in statistics many θ’s will be often be considered.

Inference is the art or science of learning about θ ∈ Θ from observing
x ∈ X . While it is possible to look systematically at all forms of inference as
“decision problems,” here we will instead focus on two traditional inferential
aims: Estimation, in which we try to guess the value of θ after observing
X = x with some Statistic T (X) (a statistic is any function on X ; an
estimator is a statistic taking values in Θ, with the intention that T (X) ≈ θ),
and Hypothesis Testing, in which we try to assess the plausibility of a
hypothesis of the form H : θ ∈ A for sets A ⊂ Θ. We will learn about a
variety of desirable properties that estimators might have, and will learn how
to construct and assess them; we will see how different statistical traditions
assess hypotheses. All of this “inference” is based, in one way or another,
on the same function f(x | θ).

1.1. The Likelihood Function

The function f(x | θ) depends on both x ∈ X and θ ∈ Θ, and so could be
thought of as function (the pdf) of x ∈ X , indexed by θ ∈ Θ— but for
statisticians the opposite view is more useful: as a function of θ ∈ Θ, called
the Likelihood Function, for fixed x ∈ X . The observation of X = x
lends evidence in favor of values of θ where f(x | θ) is high, and evidence
against values of θ where f(x | θ) is low.

It is only the ratio of the likelihood function at different points that is
meaningful. Since multiplying f(x | θ) by a constant doesn’t alter those
ratios, the likelihood is only defined up to an arbitrary multiplicative factor
that is “constant” in the sense that it doesn’t depend on θ (it might depend
on x). The reference measure m(dx) was arbitrary, so different choices
should lead to the same likelihood function; for any c(x) > 0 the density
function for X with respect to c(x)−1m(dx) will be c(x)f(x | θ), so again
the likelihood is only defined up to a (maybe x-dependent) constant factor.
Sometimes we use the notation L(θ) or Lx(θ) for the likelihood f(x | θ), or
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`(θ) or `(θ | x) for its logarithm ln f(x | θ).

For example, let X = (X1, · · · , Xp) be a vector of independent Poisson-
distributed random variables Xj ∼ Po(λ), all with the same mean parameter
λ ≥ 0. In this case we can take θ = λ ∈ Θ = [0,∞) and, for x ∈ X = Z

p
+

(p-vectors of nonnegative integers), the likelihood function is

f(x | θ) =
θ

P

xj e−pθ

∏

xj!
∝ θ

P

xj e−pθ = exp
(

pXp ln(θ) − pθ
)

.

Notice that f(x | θ) depends on x = (x1, · · · , xp) ∈ Z
p
+ only through the

average Xp or sum Sp(X) =
∑p

1 Xj; these are our first examples of Suf-

ficient Statistics, functions of the data that embody all evidence about
θ. Of course any monotone function of Sp or e−Xp is also sufficient. What
inference can be made if we observe a total of S10 = 1 in p = 10 independent
observations? The likelihood function may be displayed using the R code:

eg1 <- function(s=1, p=10) {
mu <- s/p;
x <- seq(0, 4*mu,, 101);
y <- dpois(s,p*x);
plot(x,y,xlab="Theta",ylab="Likelihood",type="l");

}

A plot of this function appears in Figure 1.

1.2. Three Paradigms

There are three main inferential paradigms in common use today: Bayesian,
Classical (also called Frequentist or Fisherian), and Likelihoodist. In the
Bayesian paradigm the uncertain quantity θ ∈ Θ is thought of as a random
variable with some probability distribution π(dθ) (the “prior distribution”),
and the likelihood function Lx(θ) = f(x | θ) is thought of as the conditional
probability density function for x, given θ; statistical analysis is just proba-
bility theory based on the joint distribution π(dθ)f(x | θ) for θ and x, or on
the Posterior Distribution π(dθ | x) = cπ(dθ)f(x | θ) (the normalizing
constant c = 1/

∫

Θ
π(dθ)f(x | θ) is seldom important).

The language and methods of probability theory are not used to describe
uncertainty about θ ∈ Θ in the Classical paradigm; instead we compute for
each possible value of θ the probability of observing different values X ′ = x′,

3



and base inference on how probable the observed x and certain others would
be under different possible θ’s.

The Likelihoodist paradigm is a minimilist school, with little use of proba-
bility. The likelihood function is used to measure the relative evidence the
data offer for different values of θ, but “evidence” is never defined and no
probabilistic predictions or statements are made.

In this course we will be occupied primarily with presenting and comparing
Bayesian and Classical methods for statistical inference.

Likelihood L(θ) f(x | θ), as a function of θ
Statistic S = S(X), T, ... A function of the data, X
Sufficient S, T, ... A statistic S(x) such that f(x | θ) = φ(S)
Parameter θ ∈ Θ The possible “States of Nature”
Outcome x ∈ X The possible values of X
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Figure 1. Poisson likelihood for S10 = 1, p = 10.
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