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A common problem encountered in the analysis of discovery data is the size-bias phenomenon
in which the larger units tend to be discovered first. One approach to account for this bias
is to model the discovery process as sampling successively from a finite population without
replacement and with probability proportional to size. We consider in this article a generalized
version of this model for analyzing multivariate data with any given measure of size. We
assume a superpopulation framework and develop procedures for maximum likelihood es-
timation of the parameters of the distribution. The use of the EM algorithm for computing
the maximum likelihood estimates, associated computational issues, and relationships to
regression estimators in survey sampling are discussed. Oil discovery data from the Rimbey-
Meadowbrook reef play are used to illustrate the techniques.

KEY WORDS: EM algorithm; Finite population, Parametric inference; Petroleum resource

estimation; Size-biased sampling; Superpopulation model.

1. INTRODUCTION

In analyzing discovery data, one frequently has to
deal with the size-bias phenomenon, in which the
larger units tend to be discovered first. In petroleum
resource estimation, it is well-known that measures
of size of a pool, such as area and mean formation
depth, impact its chance of discovery (Arps and Rob-
erts 1958). Littlewood (1981) considered a software
debugging model in which the bugs that make the
greatest contribution to the overall failure rate are
discovered earlier and so are fixed earlier. Similar
situations also arise in testing for design errors in
hardware reliability. Any reasonable inference based
on the discovered data must take the biased nature
of the sample into account; treating the data as a
simple random sample from the population of inter-
est can lead to extremely biased predictions.

One of the approaches proposed in the literature
to account for this size bias is to model the discovery
process as sampling successively from a finite pop-
ulation without replacement and with probability
proportional to size (Kaufman, Balcer, and Kruyt
1975). See also Cozzolino (1972). We consider in this
article a generalized version of this model for ana-
lyzing multivariate data with an arbitrary measure of
size. Specifically, let Y;, . . ., Yy, with Y; = (Y},

., Yy)' be the values associated with the N units
of a finite population that are available for discovery.
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Let w(-) denote a positive weight function. Then,
given Y, =y, (i =1, ..., N) the probability of
observing the ordered sample (i}, . . . , i,) under this

model is
Pr{(il,...,i,,)|Y,-=y,-,i=1,...,N}
1 w(y;)
=11 2 , (L1
j=1 ;V=1 w(y:) — 2:10 W(Yik) (1)

where w(y;) = 0. In other words, the sample is
obtained by selecting successively without replace-
ment and with probability proportional to w(y) from
the finite population of N units.

Note the similarity between (1.1) and the tradi-
tional probability-proportional-to-size-without-re-
placement scheme in survey sampling. In the latter
case, however, the size measures associated with all
N units of the finite population are known a priori.
In (1.1), the probability of selecting a unit is a func-
tion of its a priori unknown characteristics, and the
characteristics associated with the N — n unobserved
units remain unknown even after the sample be-
comes available.

The initial formulation of this model with w(y) =
y (univariate case) was given by Kaufman et al. (1975).
The generalization to w(y) = y” was considered by
Bloomfield, Deffeyes, Watson, Benjamini, and Stine
(1979), Smith and Ward (1981), and Lee and Wang
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(1985). Several methods of estimation have been de-
veloped for the univariate problem in the literature.
Andreatta and Kaufman (1986), Gordon (1983),
Smith and Ward (1981), Wang and Nair (1988), and
Bickel, Nair, and Wang (1989) discussed nonpara-
metric estimation procedures. See also Mallows and
Nair (1987) for a problem associated with unbiased
estimation in such models. Inference for parametric
models such as the lognormal distribution was con-
sidered by Barouch and Kaufman (1976, 1977), Bar-
ouch, Kaufman, and Nelligan (1983), Lee and Wang
(1986), and others. Most of these results are based
on a superpopulation framework in which the attri-
butes Y;’s associated with the units of the finite pop-
ulation are assumed to be generated independently
and identically according to a distribution function
(df) F(y),

This article considers parametric maximum like-
lihood estimation methods for the (multivariate)
biased sampling model in (1.1). We also assume a
superpopulation framework, although we view this
primarily as a mechanism for doing smooth, paramet-
ric estimation of the underlying population. It is as-
sumed that the superpopulation distribution F is
known except for a vector of unknown parameters
0 =(0,...,0,), and fo(y) denotes the density.
We develop procedures for maximum likelihood es-
timation of 0. In a typical data-analytic approach,
one would first estimate the distribution nonpara-
metrically and then use goodness-of-fit procedures
(formal or graphical) to choose the appropriate para-
metric distribution (see Wang and Nair 1988). The
lognormal distribution has been found to be useful
for modeling oil and gas discovery data. Throughout
the article, it is assumed that the weight function
w(y) and the finite population size N are known. See
the discussion in Section 5, however.

The limiting case, as N — « (n/N — 0), of this
biased sampling model was studied by Cox (1969),
Patil and Rao (1977, 1978), and Vardi (1982). In this
infinite population case, the observations are iid with
density

(w(y) fo(y)]
[EoW(Y)] .

The univariate case with w(y) = y is the familiar
length-biased sampling problem. At the other ex-
treme, if n = N (n/N = 1), F can be estimated in
the usual way based on the N iid observations Y;,
-+ ., Yy. Since all N units in the finite population
have been observed, the sampling design becomes
irrelevant, and the inference does not depend on the
biased sampling model (1.1). As we shall see in Sec-
tion 3, the effect of the weight function w(y) in finite
populations is in between these two extreme cases.

The article is organized as follows. In Section 2,

g(y) = (1.2)
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discovery data from the Rimbey-Meadowbrook reef
play and simulation results are used to illustrate the
existence and consequences of the size-bias phenom-
enon. Maximum likelihood estimation under the suc-
cessive sampling discovery model is considered in
Section 3. The likelihood equations under the model
are derived, and the EM algorithm for solving the
equations and related computational issues are dis-
cussed. In Section 4, we consider situations in which
the likelihood can be separated into a part that de-
pends on the biased sampling mechanism and an-
other part that is dependent of the bias. The analysis
of multivariate data simplifies considerably in such
cases. In Section 5, we illustrate the techniques by
reanalyzing the oil discovery data from the Rimbey-
Meadowbrook reef play.

2. AN EXAMPLE

The Rimbey-Meadowbrook reef chain, located in
central Alberta, is one of the most productive plays
in the western Canada sedimentary basin. It pro-
duces both oil and gas but is predominantly a con-
ventional oil play. The first discovery from this play
was made in 1947 and the last significant one in 1984.
A detailed description of the geological formation of
the Rimbey-Meadowbrook reef chain was given by
Stoakes (1980). See also Lee and Wang (1986). Table
1 gives the data for the pools discovered before 1968.
This data set was obtained from Energy Resources
Conservation Board (1985). The data in Table 1 con-
tain information on the discovery order, as repre-
sented by the discovery number, and the following
multivariate attributes associated with the discovered
pools: volume—the volume of oil in place, measured
in million cubic meters (10°n%); area—the area of
the pool closure, measured in hectares (ha); net pay—
the average net-pay thickness of a pool, measured
in meters (m); and depth—the mean formation depth,
measured in meters (m) below sea level. For illus-
trative purposes, we assume that the superpopulaton
distribution of the data

Y = (volume, area, net pay, depth) (2.1)

associated with each pool is multivariate logonormal
with parameters p and X. Table 2 gives the maximum
likelihood estimates (MLE’s) of . and %, treating the
data in Table 1 as a simple random sample. The
estimates corresponding to the volume variable are
of particular interest, since we want to predict the
amount of recoverable oil remaining in the play. From
Table 2, the estimate of the mean of log-volume is
1.33. Suppose the total number of pools in this play
is 40 (see Lee and Wang 1986). Then we can predict
the total recoverable oil from the remaining 17 pools
as approximately 64 million cubic meters (17 X e!%¥).

That this is an overly optimistic prediction is easily
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Table 1. Rimbey-Meadowbrook Reef Discovery Data

Discovery Field/pool Volume Area Net pay Depth
number name (10°m®) (ha) (m) (m)

1 Leduc-Woodbend A 61.200 8,812 10.80 1,620.5
2 Redwater 207.000 15,199 31.39 977.8
3 Golden Spike A 49.600 590 135.64 1,728.8
4 Acheson 27.600 1,542 24.12 1,547.8
5 Golden Spike C 425 158 5.82 1,827.0
6 Wizard Lake A 62.000 1,075 86.13 1,969.0
7 Glen Park A 4.660 173 39.32 1,921.8
8 Leduc-Woodbend B 2.380 751 7.99 1,6563.5
9 Bonnie Glen 125.000 3,120 55.44 2,165.6
10 Westerose 31.000 652 72.20 2,204.6
1 St. Albert B 1.750 110 22.00 1,424.9
12 Fairydell-Bon Accord 2.770 405 13.75 1,226.5
13 Homeglen-Rimbey A 14.900 4,563 7.56 2,415.5
14 Leduc-Woodbend F 1.030 81 20.91 1,658.1
15 Yekau Lake A 10.700 250 6.58 1,657.5
16 Morinville A .091 16 10.97 1,379.2
17 St. Albert A 3.700 101 43.24 1,463.6
18 Morinville B 2.590 323 14.48 1,608.1
19 Sylvan Lake 1.620 987 6.16 2,881.9
20 Morinville C .615 21 3.51 1,379.8
21 Wizard Lake B .160 54 4.45 2,108.0
22 Lanaway .245 65 7.92 2,923.3
23 Yekau Lake B .040 16 7.32 1,662.7

seen from Figure 1, which shows plots of log-volume
and log-area against the discovery order. The smooth
curves, obtained by the lowess procedure (Cleveland
1979), illustrate the general declining trend with ad-
vancing exploration. It is known in petroleum ex-
ploration that the area of a pool significantly affects
its probability of discovery. Although volume does
not impact discovery order directly, it is highly cor-
related with area, thus explaining the declining trend
in Figure 1b. These plots indicate clearly that there
is a strong size bias associated with the discovery
order and that most of the larger pools are likely to
have been discovered. Treating the discovered data
as a simple random sample will, therefore, result in
biased inference. For example, the sample mean of
the data will overestimate the underlying population
mean and the sample variance will underestimate the
population variance.

Table 2. Maximum Likelihood Estimates of the Parameters
of the Multivariate Lognormal Distribution for the Rimbey-
Meadowbrook Data Under Simple Random Sampling

bu

Net

Variable 7, Ak Grk Volume Area pay Depth

Volume 0 1.33(%.10) 5.45 (+2.70) 1.00 87 65 -.09

Area 0 5.92(+.08) 3.20 (+.93) 1.00 .28 -.01
Net pay 0 2.80(+.04) 1.00 (+.09) 1.00 -.07
Depth 0 7.46 (+.01) .06 (+.00) 1.00

NOTE: Standard errors are in parentheses.

This phenomenon is demonstrated very clearly by
the results of a simulation study summarized in Fig-
ure 2. The study was based on a (univariate) normal
superpopulation model with parameters 4 = 0 and
o® = 1. We generated a finite population of size N
= 50 by iid sampling from this superpopulation. A
size-biased sample of size n = 25 was then selected
from this finite population according to (1.1) with
w(y) = e’. We simulated 250 such samples, and from
each sample we calculated the sample mean (Y ) and
sample variance (S7). We also computed the maxi-
mum likelihood estimates 2 and 62 under the correct
biased sampling model. The theory and computation
of the MLE’s are discussed in Sections 3 and 4. Figure
2a is the boxplots of Y and /i, and Figure 2b is
the boxplots of §% and 62 from the 250 simulations.
It is clear that the sample mean grossly overestimates
u = 0. The median of the 250 simulated values was
-51; in fact, all but one of the 250 sample means were
positive. Similarly, the sample variance greatly
underestimates 2 = 1. On the other hand, the dis-
tributions of /1 and 62 are centered around their re-
spective true values. See Section 3.5 for additional
discussion of the MLE’s from this simulation study.

It is obvious from the discussion thus far that one
must take into account the biased nature of the dis-
covered data in doing inference. Sections 3 and 4
develop maximum likelihood estimation procedures
assuming the sampling model (1.1) and a superpop-
ulation framework. The results are illustrated in Sec-
tion 5 by reanalyzing the Rimbey-Meadowbrook data

TECHNOMETRICS, NOVEMBER 1989, VOL. 31, NO. 4
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Figure 1. Plots of Log(Area) and Log(Volume) Against Discovery Order. The smooth (lowess) curves show clearly that the

larger pools tend to be discovered earlier.

using successive sampling discovery model and the
weight function

w(y) = volume™ X area’™ X net pay” X depth’ ,
2.2)

with y, = 0. Although this weight function does not
depend explicitly on volume, inference regarding the
volume variable is affected by the size bias, since it
is correlated with the other variables.

3. MAXIMUM LIKELIHOOD ESTIMATION
3.1 Likelihood Equations

In this section, we derive the likelihood equations
arising from the successive sampling discovery model.
Let X; be the value associated with the jth discovery.
We assume the labels are noninformative and so the
observed ordered sample can be denoted by (x,,

.., X,). We also assume throughout that the df F
is continuous so that the values associated with the
different units of the finite population are distinct

-
o
~ 18 T
|
! T
0 | |
o |
| |
| 1
o 1
o ] -
|
|
n
S 1 1
53 "

with probability 1. Relabel the elements of the finite
populationso that X; = Y;(j = 1,2, . . ., n). Then,

given Y, =y, (i=1,...,N),withy, =x;,(i = 1,
., n), the probability of observing the ordered
sample (X, . . . , X,) is

Pr{(x;, . . ., %) | ¥i, - - -, ya}
- w(x;)

= , (3.1

bl + gy O

where b; = w(x;) + -+ + w(x,). To get the uncon-

ditional distribution of (X, . . . , X,), we have to
sum (3.1) over all possible {y,, . . . , yn}, multiply
by the joint density of (Y, . . ., Yy), and integrate
over the unobserved values (Y,.;, . . . , Yy). This
gives the joint density of X; = x; (i = 1,...,n) as

NU_ (o folx)wix)
(N—MKH b )

j=1 J

n b
X E : . (32
’ (.1;11 bi + w(Y,) + - + W(YN)) G2
o
|
|
2 I
T |
T |
o | l
. ; |
o 1 L
7 2
SY [of

Figure 2. Boxplots of the Estimates of the Parameters u and o2 of a Normal Distribution Under the Size-Biased Sampling
Model. The estimates were obtained from a simulation study with N = 50, n = 25, w(y) = e, and simulation size 250. The
boxplots of the sample mean (Y ) and the MLE j are given in panel a, and the boxplots of the sample variance (S%) and the

MLE &2 are given in panel b.

TECHNOMETRICS, NOVEMBER 1989, VOL. 31, NO. 4



ESTIMATION UNDER A DISCOVERY MODEL 427

Let R = w(Y,.) + - + w(Yy)and T = 27
&/b;, where ¢&’s are iid standard exponential variates
independent of the Y;’s. Then the expectation term
in (3.2) is, in fact,

Eq H E)_jrl—R ERE;[exp(—RT)]. (3.3)

The second expectation in (3.3) is the Laplace trans-

form of T, a sum of independent exponential random
variables.

So let ¢(t; 8) = Egfexp[—tw(Y))]}, the Laplace

transform of w(Y,). By interchanging the expecta-

tions in (3.3), the joint density of X;, ..., X, in
(3.2) can be written as
N! fﬂ(x)w( ) N-n
T | 6 o1—rg,0) a,
(3.4)

where g,(¢) is the general gamma or Erlang density
(Johnson and Kotz 1970, p. 222) of T,

n

&) = z ci[be "],

i=1

t>0, 3.5)

and

¢ = H b/ (bx — b;). (3.6)

k#i

This density is itself a linear combination of expo-
nentlal densities and equals O at the origin since
i-1 ¢:b; = 0. It depends on the data through the
partial sums b; = Zi_; w(x,) and is sensitive to the
order in which the data are observed.
Define

O = [ [pEorgod (1)
Then the log-likelihood of @ given the data is

log L(8) = constant + > log fo(x;) + log S(8).

j=1
(3.8)
By differentiating (3.8), we get the likelihood equa-
tions

g % log fo(x;)

+ (N =n) f [ log b (t; 9)] ho(6)dt = 0 (3.9)

forr =1, ..., m, where hy(t) is the data-dependent
density function

ho(t) = [6(5; )]V g, (1)/S(8).  (3.10)

Remark 3.1. If w(y)=1orifn = N, S(8)is a
constant independent of 0 so that the likelihood re-
duces to the usual simple random sampling model
based on n iid observations from the df Fy. On the
other hand, if we fix n and let N — « (so that n/N
— 0), the likelihood tends to the one based on n iid
observations from the biased sampling model (1.2).

3.2 EM Algorithm

Neither the log-likelihood (3.8) nor the likelihood
equations (3.9) can be expressed explicitly in general.
Barouch and Kaufman (1976, 1977) used an asymp-
totic expansion to approximate the likelihood func-
tion in the special univariate lognormal situation with
w(y) = y. This expansion is involved, and its usage
in practice appears difficult. Using the Newton—
Raphson procedure to numerically solve the likeli-
hood equations would involve the evaluation of (m?
+ 3m + 2)/2 double integrals for each iteration—
one for the log-likelihood in (3.8), m for the score
functions in (3.9), and m + [m(m — 1)]/2 for the
information matrix 1,(8). Quasi Newton methods us-
ing only the first derivatives would be computation-
ally preferable. In this section, we discuss the EM
algorithm for computing the MLE’s. See also Bar-
ouch et al. (1983) for a special case. The application
of the EM technique to this problem is particularly
appealing because of its interpretability.

Let hy(t) be the density given by (3.10). Define
another density function

k(y |, 8) = exp{—mw(y)}fo(y)/$(:; 8). (3.11)

Under the successive-sampling-discovery model,
the conditional distribution of the remaining Y,
, Yy, given the data (x,, . . . x,), is

fo(yas1s -

n+1l»

, Yn | data)

= I:ll{bf’[bf + W(anr) + o+ wlyl)

N

x 1 fo(y)/S(8)

i=n+1

=Jﬁ

0 i=n+1

e 00fo(y)ga(t) dt/S(8)

= [ T1 kil 4, 0)he(t) .

0 i=n+1

(3.12)

This density is symmetric in its arguments and is a
mixture of a product density. From this, the condi-
tional distribution of Y, ,, given the data is obtained
as

fo(y | data) = fo k(y | t, O)ho(t) dr.  (3.13)

TECHNOMETRICS, NOVEMBER 1989, VOL. 31, NO. 4
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Note that

)
30, [log ¢(z; 0)]

= [ |5 108 549 | expC-mt)
X fo(y) dy/¢(t; 8)
- [ | e 50 | k3 16,0 . 19

So the integral in (3.9) can be written as

f [60 log & (&; 0)] ho(t) dt

) fo {f [a_a(? log fo(y)] k(y | t, 0)ho(2) dy} dt
f [80 log fo(”](f k(y | t, 0)h6(r) dt) dy

E, ([60 log f.,(Y)]

Therefore, the likelihood equations (3.9) are in fact
given by

Eq {2 [60 log fo(Y )]

This expression has a nice interpretation; if all of the
Y,’s in the finite population are known, we would
just solve =, _, (3/6,)log fo(ye) = 0 to get the max-
imum likelihood estimates; since some of the Y,’s
are unobservable, we solve instead for its expecta-
tion, given the data x;, . . . , x,. This interpretation
is precisely the idea behind the EM algorithm
(Dempster, Laird, and Rubin 1977) for incomplete

data.
data}

Let
= i log fo(x;) + (N — n)Ey{log fo(Z) | data},

data) . (3.15)

data} = 0. (3.16)

0(®|0*) - Ey {[2 og £ |

(3.17)

where Z denotes any one of the (N — n) unobserved
variables Y,,;, . . . , Yy. The conditional distribu-
tion of Z, given the data, is given by (3.13). The EM
algorithm for our problem is then given by the fol-
lowing:

1. Start with an initial value 0©,
2. Given 8 (p = 0, 1, . ..), obtain 6*" as

TECHNOMETRICS, NOVEMBER 1989, VOL. 31, NO. 4

follows:

E Step. Compute Q(0 | 6%”) in (3.17).

M Step. Set 0(P*) to be a value of @ that maximizes
Q(0 | ) by solving
d nlg
— Py = =<=
27 @160 = & {n S 7108 1) |

j=1

data} =0

(3.18)

forr=1,...,m.
3. Repeat the iteration until the log-likelihood (3.9)
stops improving.

Under fairly general conditions, the EM iterations
{8} increase the likelihood monotonically and the
likelihood converges to a stationery point (Dempster
et al. 1977; Wu 1983). If the likelihood is unimodal
with only one stationary point, @ will be the unique
MLE. Otherwise, we can only determine if it cor-
responds to a local maximum. In all our applications,
however, we repeated the EM algorithm with several
starting points, and in all cases the algorithm con-
verged to the same estimates.

Although the EM algorithm can be used with any
distribution, the computations can be prohibitive in
general. Fortunately, as described by Dempster et
al. (1977), the algorithm simplifies considerably when
the underlying df F is a member of the regular ex-
ponential family

fo(y) = b(y) exp{0’s(y)}/a(0),

where 0 € O, an m-dimensional convex set, and s(y)
is an m-dimensional vector of sufficient statistics. In
this case, the EM iteration is based on the complete-
data sufficient statistic s(Y) and is given as follows:

(3.19)

E Step. Given 6%, compute

s = %s + (1 - %) Eyw{s(Z) | data}, (3.20)

where § = (1/n) 27_, s(x,).
M Step. Obtain 8+ as the solution in @ of the
equation

Eg{s(Y)} = s,

where

E4{s(Y)} = [ log a(0), . 0 log a(O):I’.

(3.21)

a0,
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Note the structure and the intuitive interpretation
behind (3.20). The estimator is a convex combination
of the observed quantity and the conditional expec-
tation of the unobserved quantity. This is similar to
the superpopulation estimators in survey sampling.
The relationship between (3.20) and the regression-
type estimators in survey sampling will be discussed
in Section 4.

Example 3.1. Consider the gamma distribution
with density

fo(y) = Boy*"le ?/T'(a),
Let

nl1 n
s(lP) = N I:; 2 x]] + (1 — N) Eo(p){Z ' data}

Y>0,0 = (a,pf).

sg p)

I
Z2ls
—
S =

<)

0%
=
=

n
+ (1 - N) Ey»{log Z | data}, (3.22)
and let y(a) = (d/da) log I'(a), the digamma func-
tion. Then the EM algorithm, given a(® and ), is
as follows:

1. Determine a(?*D as the solution of a of
log a — y(a) = logs® — s, (3.23)
2. Take f*) = q(r*/s(P,

One iteration of steps 1 and 2 solves the usual like-
lihood equations in the complete data case. The tri-
gamma function y'(a) is needed if Newton’s method
is used for solving Equation (3.23). An alternative
is to use the approximation discussed by Johnson and
Kotz (1970, p. 189). Computational issues in eval-
uating the conditional expectations of Z and log Z
are discussed in Section 3.5.

Example 3.2. Consider the K-dimensional mul-
tivariate normal distribution with density

Fly) = @n)*2 3]
x ety - WIy - Wh 0= (w3,

Lognormal distributions have been used to model
the pool distributions in petroleum exploration. This
example can be applied to such cases by transforming
the data. See Section 5.

Recall thatx, = (x;1, . . ., xx) (i =1,...,n)
denote the observations in order of appearance, and
let my, = n-! 2;;1 Xik (k = 1, ey K) and S/k(ﬂj,

m) = nt X, (e = m)Cxa — w)] G, k = 1,
..., K). Let g, denote the (j, k)th element of 3.

Then the EM iteration (") — 0(*1 is given by
u* = (n/N)ym, + [1 — (n/N)]Ey»{Z, | data}
0,('12”“) = (”/N)Sjk(.“;(pﬂ), ,Ufcpﬂ))
+ (1 = (UN)Egrnso
x {(Z; = " ")Ze — i) | data},
jk=1,...,K (3.24)

Suppose, for some i, w(y) does not depend on y;,
and Y; is independent of the other Y;’s. Then infer-
ence about the marginal distribution of Y; will be un-
affected by the sampling bias. In this case, Eqn{Z, |
data} = A{” in (3.24), and so the EM iterations will
converge to the usual estimates 4; = m; and 6; =
n~' 2/, (x; — my)?, as they should. On the other
hand, as long as Y; is not independent of the other
Y/’s, inference about y; and g; will be affected even
if the biased sampling mechanism does not explicitly
depend on y;.

3.3 Interval Estimation

The inverse of the observed Fisher information
matrix at  is often used to estimate the variance—
covariance matrix of the MLE. For the general in-
complete data problem considered in Dempster et
al. (1977), it can be shown under suitable regularity
conditions that the (r, s) entry of the observed Fisher
information matrix is given by

N 2

d
1,,(0) = Egd — lo Y,) | data
0.5(0) o{ /;1 30,90, g fol k)l }

N N
— COvy { > 70, log fo(Y4), 21 0. log fo(Y)) | data} .
r = s

(3.25)

Therefore, 1,(0) is just the difference between the
conditional expectation of the complete-data infor-
mation matrix and the conditional covariance of the
complete data-score functions given the data. For
the regular exponential family (3.19), let § =
22;1 s(Y,) be the m-dimensional vector of complete
data-sufficient statistics. Then the observed Fisher
information matrix in (3.25) can be expressed sim-

ply as
1,(0) = covy(S) — cove(S | data) (3.26)

(Dempster et al. 1977). Computational issues in-
volved in calculating (3.25) and (3.26) are discussed
in Section 3.5.

If the MLE’s have a limiting normal distribution,
we can estimate the standard errors in (3.26) and use
the normal approximation to construct confidence
intervals. But the usual results on asymptotic nor-
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mality of the MLE’s are not applicable here since
the likelihood in (3.4) is based on data that are nei-
ther identically nor independently distributed. We
have looked at this problem but have not been able
to establish the asymptotic normality of the MLE’s.
This is an issue that merits further investigation. We
conclude this section by summarizing the results of
a small simulation study to examine the adequacy of
using a normal approximation.

The details of this simulation study are the same
as those reported in Section 2. We generated a finite
population of size N = 50 by iid sampling from a
(univariate) lognormal distribution with parameters
u = 0 and ¢* = 1. A sample of size n = 25 was
selected from the finite population according to (1.1)
with w(y) = y. We computed the MLE’s, 2 and 62,
from 250 such simulations.

The boxplots of the simulated 2’s and 62’s are given
in Figure 2. The means (medians) of the 250 simu-
lated values were .02 (.00) and .99 (.95), respec-
tively, so the distributions are centered around the
true values of u = 0 and ¢ = 1. To check the
adequacy of the normal approximations, we exam-
ined the histograms (not shown here) and normal Q-
Q plots. Figure 3 is the normal Q-Q plots of the /’s
and log-6?’s. The log-transformation improved the
normal approximation for the 6’s. There is a slight
asymmetry in the distributions (this was more evident
in the histograms), and the fit is not as good near
the tails. Overall, the normal approximations seem
to be reasonable.

We also computed the estimated standard errors
of /1 and & using (3.26). The averages of these 250
values were .24 and .17, respectively. These were in
close agreement with the sample standard deviations
of the 250 simulated values of /i and 6—.23 and .18,

0.6

0.2

-0.6

std.normal quantiles

respectively—so there was no significant bias in using
(3.26) to compute the standard errors.

Table 3 compares the nominal and observed levels
of the confidence intervals based on the standard
errors and the normal approximation. Intervals shown
are those based on i and log 62. Results for 62 were
qualitatively similar to those based on log 2. Since
the simulations are based on (only) a sample of size
250, the standard error of the observed values in
Table 3 is about =.02. The observed levels are larger
than the nominal levels in all cases, suggesting that
the tails of the standardized variables are somewhat
heavier than a standard normal. The intervals for u
perform slightly better than those for ¢2. Overall,
the approximations are not unreasonable. These re-
sults, however, are rather preliminary, and further
work is needed to examine this issue in more detail.

3.4 Computational Issues

The computation of the likelihood, the likelihood
equations, and the information matrix all involve
evaluating integrals of the form

H(®) = f TH@0g () dt (327

0
for some H(t; 0). The function H(t; 8) involves the
Laplace transform ¢(¢; 0) or its partial derivatives.
The main difficulty in computing (3.27) is the accu-
rate evaluation of the density g,(¢), particularly for
values of ¢ near 0. Note that
tn—l

g0) = [16——— + O(")  (3.28)

(n = 1!

for ¢ near 0, so the values are close to 0 if n is large.
Further, the ratios of the coefficients ¢;’s in (3.6) can

0.5

A's

log o

-0.5

-1.0

std.normal quantiles

Figure 3. Normal Q-Q Plots of the MLE’s j1 and Log 2. The estimates were obtained from a simulation study (see the descrip-
tion of Fig. 2 for details). The straight lines correspond to the best-fitting normal distributions with parameters equal to the

sample mean and standard deviation of the simulated values.
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Table 3. Comparisons of Nominal and Observed Levels
of the Confidence Intervals for u and ¢ for a
Lognormal Superpopulation

Observed level

Nominal
level i G?
.01 .02 .06
.05 .08 12
.10 .16 .15

NOTE: The results are based on a simulation study with N = 50, n = 25, and
w(y) = y. The intervals for o2 were based on log a2 as the pivot.

be large, and they alternate in sign so that a large
number of cancellations will occur near ¢ = 0. Be-
cause of round-off errors, Expressions (3.5)—(3.6) are
practically useless for computing the density g,(¢) for
t near 0. In the special case where w(y) =1, b, = n
—i—1and

b, = (—1)'n (’l’ - 11> . (329

In this case, it can be shown that

S@) =n r N (1 - 2 ldz = l/(?{) ,

(3.30)

which can be a very small number. These observa-
tions suggest that in general we must avoid calculat-
ing the partial fractions coefficients in (3.6) in eval-
uating g,(¢).

Among the different methods available in the lit-
erature (Davies 1980; Sheil and O’Muircheartaigh
1977), we found the one based on the inverse Laplace
transform (Crump 1976) to perform best. The La-
place transform of g,(¢) is
n b

L,(s) = ,
© i b ts

(3.31)
and the inverse transform is given by the well-known
inversion formula

g(t) = (e®/m)
X f " [Re{L.(s)} cos wt — Im{L,(s)} sin wr] dw,

(3.32)

where s = D + iw and D is any real number such
that L,(s) is analytic for Re(s) > D. Since g,(¢) is
of exponential order —b,—that is, g,(t) = Me'—
this inverse transform can be well approximated on
a compact interval by a Fourier series approximation.
See Crump (1976) for details. The IMSL (1984) sub-

routine FLINV can be used for this purpose. Choos-
ing D in (3.32) (called ALPHA in FLINV) appro-
priately to achieve the desired accuracy can be quite
delicate, however. We used an iterative scheme to
choose D.

The function H(¢; 8) in (3.27) involves the Laplace
transform ¢(¢; @) or its partial derivatives. For the
gamma and some other distributions, these can be
evaluated explicitly. For others, such as the lognor-
mal, they too have to be evaluated numerically. We
used the Gauss—Hermite quadrature method to com-
pute this for the lognormal distribution for the Rim-
bey-Meadowbrook application in Section 5. This
particular quadrature method takes advantage of
the e * component in the lognormal distribution.
For other distributions, different numerical methods
should be considered. To compute the integrals of
the form (3.27), we used the Gauss-Legendre quad-
rature method. Specifically, for a given data set, we
chose a set of meshpoints carefully within the im-
portant domain of the data-dependent density g,(¢).
Then we evaluated H(¢; 0) and g,(¢) at these points
and approximated the integral by a partial sum. The
obvious advantage of this strategy is that the g,(¢,)’s
need to be evaluated only once for all the different
iterations in the EM algorithm. Ideally, we would
like to let the meshpoints depend on the value of 8
and the particular function H(t; 0) that is being eval-
uated. Since g,(¢) is very expensive to evaluate, this
is not computationally feasible.

We have only considered numerical integration
techniques in our computations. It is also possible to
use Monte Carlo integration techniques to compute
the integrals involved. We have not investigated this
approach.

4. TWO-STAGE ESTIMATION

In the multivariate case, the direct computation of
the MLE’s can be quite formidable. For example,
for the multivariate (log)normal problem in Section
3, one has to solve K + K(K + 1)/2 iterative equa-
tions in (3.24), K for the means and K(K + 1)/2 for
the variance—covariance matrix. In this section, we
show that the estimation problem can be simplified
considerably under certain conditions.

Suppose that the original problem can be repa-
rameterized (smoothly) from 0 to (m, ) € Q; X Q,
so that the marginal distribution of W = w(Y) de-
pends on m € €2, but not on * € (Q,. Further, the
conditional distribution of Y given W = w depends
on T but not on m. Then W is ancillary for T and
conditional on W = w and Y is conditionally suffi-
cient for 7 in the presence of m (Cox and Hinkley

1974, p. 35). Since fo(y) = fo(w)f:(y | w), the log-
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likelihood (3.8) is equivalent to

n

> log fu(y; | wy) + 2log falw;) + log S(m),

4.1)

where S(m) given by (3.7) now depends only on .
So we can estimate 0 by estimating n) and 7 sepa-
rately. Estimation of m involves the biased likelihood
(3.8), but it only depends on the univariate data w;
(j =1, ..., n). The estimation of T involves only
the (conditional) likelihood of Y; given W; = w; (j
= 1, ..., n). This conditional distribution, how-
ever, is unaffected by the biased sampling mechanism
involving the wy’s regardless of what it is. So we can
use the usual techniques to compute the MLE of 7.

When the likelihood can be separated as in (4.1),
the information matrix I,(8) needed for confidence
intervals can also be computed more easily. Let
I"(m) and I§(7) be, respectively, the observed in-
formation matrices for  and 7. We assume that the
reparameterization is smooth enough so that n and
7 can be differentiated with respect to 0 at least twice.
Define

M,(0) = on(0)/a6, 4.2)
and

%,(0) = a1(8)/06, (4.3)
forr =1, ..., m. Then it can be shown that

Lo,<(8) = 2, @)1 (i)M,(8) + #/()IP(3)%,(8).
(4.9)

As noted before, I§?() can be obtained in the usual
manner from the (conditional) likelihood of the Y,’s
given the w;s. It is much easier to compute I{"(+)
which involves only the marginal distribution of the
W[,S.

Before discussing some applications, note that the
conditions necessary for the preceding separate es-
timation of the parameters are not always satisfied.
For example, consider the case in which Y = (Y,
+ Y3) and the Y/’s are independent with a gamma
distribution with parameters 6; and 6,. Let w(Y) =
Y, + Y,. Then W has a gamma distribution with
parameter 7 = 6, + 6,, and the conditional distri-
bution of Y given W = w is based on the beta dis-
tribution with parameter + = (0,, n — 0,). Here 7
depends on v, so the separate estimation described
previously would not work in this case.

Example 4.1: Multivariate Regression. Consider
again the multivariate normal Example 3.2 with @ =
(m, 2), and suppose that w(y) = exp(y'y) with y
assumed known. Then w(Y) is lognormal with pa-
rameter n = (u,, 0,,), where 4, = ¥'pn and g, =
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v'2+. The conditional distribution of Y given w(Y)
= w is multivariate normal with parameters T = (v,
I'), where v = p + 3y(logw — u,)/0,,and ' =
3 — 32yv'%/0,,- The covariance matrix I is singular,
since the conditional distribution of Y given w(Y)
= w can be expressed in terms of any (k — 1) of
the Y/’s.

We first solve (3.24) for the univariate data w;’s to
get the MLE’s u4,, and 0,,,,. For maximum likelihood
estimation of 7, we just need to consider the multi-
variate simple linear regression model

Y,=a + Blogw, + €, i=1,...,n,
4.5)

where @« = p — 3yu,/0,, and B = 3v/0,, and the
€;’s are iid multivariate normal with mean 0 and co-
variance matrix I'. The maximum likelihood estimate
of 7 is obtained by estimating the regression param-
eters in (4.5) through least squares. Let m, = n~!
2:' 1 108 Wi, and Skw =n! 27 1 [(xlk - mk)(log w;
- m,)], and let S,,, be smnlarly defined. Then, /)’k
= Skw/Sww, ak = mg - ﬁkmw’ and Iik/ Sk/ ﬁk
ﬁ Sww. By reparameterizing, we get the MLE of 0 as

A = my + ﬁk(ﬂw - m,) (4.6)
and

A j = Skj + Bkﬁj(&ww - Sww)' (47)

Note that 2, L %l = By 2oy W8k = Gkw, and
Sy YkBiw = G, S they should.

The estimators in (3.24) reduce to these for the
special form of w(y) discussed here. Note also the
similarity of the estimator 7, to regression estimators
in survey sampling. In fact, if wy, . . . , wy are all
known, as would be the case in survey samphng, i,
= N3, log w;, so ji, does in fact reduce to the
regression estlmator in survey sampling. The expres-
sion for j in (4.6) is more general in that it holds
for any sampling scheme involving the w;’s.

When N = n, 4, = m, and 6,,, = S,., so (4.6)
and (4.7) reduce to the usual simple random sam-
pling estimators. On the other hand, if N — « with
n fixed, it is known (Scheaffer 1972) that the size-
biased distribution of w(Y) is itself lognormal with
parameters u,, + o,, and o,,. Hence 6, = S,.
and 4, = m, — S,,. From this, we see that (4.3)
and (4.4) reduce to 2 = my — S,, and g;; = Sy, as
they should. The estimators can be computed easily
in this case.

Example 4.2: Binary Regression. Let Y = (Y,
Y,) with Y, a binary random variable, and suppose
that the weight function w(-) depends only on y,. We
are interested in estimating @ or at least certain pa-
rameters such as R = Pr(Y, = 1). If the separation
(4.1) holds, we can first estimate v from the biased
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likelihood involving only the Y,’s. The conditional
probability F.(y) = Pr(Y; = 1| Y, = y) is free of
the selection bias and can be estimated using the
usual binary regression techniques. For example, if
F.(y) follows a logistic regression model, we can es-
timate the parameters using the usual logistic MLE
routines. The results can then be combined to esti-
mate 0 and the associated parameters of interest such
as R.

The preceding situation arises in many fields of
application. For example, in petroleum exploration,
Y, = 0 or 1 according to whether or not a wildcat
well is dry, and Y, denotes the area of the prospect.
Then R is the probability of discovering a pool. In
the stress-strength problem in reliability, Y, denotes
the stress applied to a component, and Y; = O or 1
according to whether or not the component failed,
which depends on whether or not the stress applied
to the unit exceeded its strength. The reliability of
the component is given by R. In software debugging,
Y, = 0 or 1 according to whether or not a program
contained a bug, and Y, represents some appropriate
measure of program complexity.

5. APPLICATION TO RIMBEY-
MEADOWBROOK DATA

Consider again the discovery data in Section 2 from
the Rimbey-Meadowbrook reef play. Assume for
illustrative purposes that the superpopulation distri-
bution of the data is multivariate lognormal. See the
discussion in Wang and Nair (1988) on data-analytic
procedures for identifying an appropriate parametric
model, however. Suppose the weight function is given
by

w(y) = area’ X net pay”s X depth’, (5.1)

with y; = 0 so that w(y) does not depend of volume.
If we apply a logarithmic transformation to the data,
we are exactly in the framework discussed in Ex-
ample 4.1. Therefore, we can estimate (0, %) by first
estimating the parameters of the univariate lognor-
mal distribution of w(Y) and then use least squares
to estimate 7.

Table 4 gives the MLE’s of the means, variances,
and the correlation matrix corresponding to N = 40
and y = (0, .84, .82, —2.68). Ignoring for the mo-
ment how these particular values of N and y were
obtained, compare the estimates in Table 4 with those
in Table 2. The means of all the variables except
depth are smaller, and all the variances are larger.
This is to be expected since the pools with larger
areas and net pays have already been discovered and
the remaining N — n pools are likely to be the smaller
ones. The reverse is true for depth, which has a neg-
ative value of y. The negative value implies that the
shallower pools have been discovered and the re-
maining ones are likely to be in the deeper horizons
of the Rimbey-Meadowbrook reef play. This is con-
sistent with geological information; the play has a
northeast-southwest down dip (Stoakes 1980), and
the largest discovered pool (Red Water, see Table
1) is located in the shallower northeastern region.
The differences in the estimates of the depth variable
between Tables 2 and 4 are rather small (see also
the comparisons in Tables 5 and 6), suggesting that
inference for this variable is not very sensitive to the
selection bias. Note also that the mean and variance
of the volume variable have changed, although this
variable is not explicitly involved in the weight func-
tion (5.1). This is due to its dependence on the other
variables. Interestingly enough, all the correlations
in Table 3 have also increased in absolute value from
those in Table 2.

Consider now the problem of predicting the re-
maining amount of recoverable oil in the play. Given
the observed data, the conditional expectation of the
log-volume of a remaining pool is —3.55, so the
amount of recoverable oil from the remaining 40 —
23 = 17 pools is (approximately) 17 x e=3% = .49
million cubic meters. This is actually an underesti-
mate since e“4 < Ee?, the conditional expectation
of volume of a remaining pool. But the important
point here is the comparison between this value and
the similarly obtained value in Section 2 under simple
random sampling. The predicted value from Table 4
of about .5 million cubic meters is several orders of

Table 4. Maximum Likelihood Estimates of the Parameters of the Multivariate Lognormal
Distribution for the Rimbey-Meadowbrook Data Under the Successive Sampling
Discovery Model With N = 40

P

Net
Variable Pk A ” Volume Area pay Depth
Volume .0 —.74 (£.75) 11.10 (£3.92) 1.00 .93 .78 -.32
Area .8 4.46 (+.56) 5.97 (+£2.75) 1.00 .55 -.26
Net pay .8 2.19 (£.31) 1.47 (£1.15) 1.00 -.27
Depth -2.7 7.55 (+.08) .08 (+.17) 1.00

NOTE: Standard errors are in parentheses.
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Table 5. Comparison of the Estimated/Predicted Values
for the Rimbey-Meadowbrook Data for Different
Values of the Finite Population Size N [y =
(0, .8, .8, —2.7) in all three cases]

Estimates N=35 N = 40 N =45
i—volume -.28 -.74 -1.15
iL,—area 4.79 4.46 417
[is—net pay 2.33 2.19 2.08
il—depth 7.52 7.55 7.57
Recoverable oil from

the remaining pools 41 .49 .52

magnitude smaller than the value of 64 million cubic
meters obtained from Table 2 under simple random
sampling.

Since our purpose is to use the Rimbey-Meadow-
brook data to illustrate the results in Sections 3 and
4, we have assumed in our analysis (Table 4) that
the values of N and vy are known. In petroleum re-
source applications, these parameters are typically
unknown. Our value of N = 40 was suggested by an
earlier analysis of the Rimbey—-Meadowbrook data
by Lee and Wang (1986). In Table 4, y was obtained
by maximizing the log-likelihood over both v and 0
= (m, %) by using a grid-search over the range of y
values. Estimation of N and v is a complex issue,
and a comprehensive discussion of the problem is
beyond the scope of this article. A few of the relevant
points are:

1. We have been concerned here only with the
analysis of discovery data. Often, there is additonal
geological and geophysical information such as con-
tour plots of prospective drilling targets and area
exhaustion maps. Such additional information can
suggest possible values of N and other characteristics
of the finite population. Most papers on the analysis
of oil and gas discovery have assumed the knowledge
of such characteristics and have considered only con-
ditional inference (also called anchored estimation).

Table 6. Comparison of the Estimated/Predicted Values for
the Rimbey-Meadowbrook Data for Different Weight
Functions w(y)

Estimates 0=.9 60=1 0= 11
ity—volume -.7 -.74 -.77
[i,—area 4.48 4.46 4.44
[is—net pay 2.20 2.19 2.19
LLa—depth 7.55 7.55 7.55
Recoverable oil from

the remaining pools .53 .49 .46

NOTE: The three cases considered correspond to w(y)’, where wi(y) = area®
x net pay® x depth=27 and é = .9, 1, and 1.1. The finite population size N =
40 in all three cases.
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See, for example, Andreatta and Kaufman (1986).
There has been some recent work on simultaneous
estimation of N and F from discovery data (Bickel
et al. 1989; Gordon 1983; Smith and Ward 1981;
Wang and Nair 1988). Note, however, that the actual
value of N can vary depending on the precise defi-
nition of what (or how small) a pool is. Even when
N is variable, the total amount of recoverable oil can
be quite stable (see the comparisons in Table 5).

2. In petroleum exploration, the parameter y in
w(y) = y’ (univariate case) is sometimes called
the coefficient of discoverability; the larger the ab-
solute value of y, the more efficient the discovery
process. Bloomfield et al. (1979) showed how one
can estimate y from mature (exhausted) plays. Si-
multaneous estimation of N and vy (in addition to
F) from nonmature plays appears to be a difficult
problem.

3. It is worth keeping in mind that in petroleum
exploration the actual discovery mechanism is a very
complicated process. The successive-sampling dis-
covery model is only a rough approximation of real-
ity. Moreover, one does not rely exclusively on the
analysis of discovery data. Information from other
sources must also be incorporated into the decision-
making process. Often N and vy are chosen by ex-
amining how the predictions vary as a function of
these parameters and choosing the values that lead
to conclusions that are consistent with other geolog-
ical information.

4. The standard errors for § in Table 4 were ob-
tained by assuming that N and y are known. The
referees point out that, since these values are based
on estimates, the resulting uncertainty also should
be reflected in the standard errors of . This is dif-
ficult to do when the methods used to estimate N
and vy are not easily quantifiable. The difficulty is
somewhat similar to a typical data analysis situation
in which a Q-Q plot is used to informally identify
an appropriate parametric distribution and the pa-
rameters are then estimated. Strictly speaking, one
should take into account the uncertainty from esti-
mating the shape of the distribution in constructing
confidence intervals for, say, the quantiles of the
distribution, and in constructing prediction inter-
vals, but this is rarely done due to the difficulty in-
volved.

Table 5 examines the sensitivity to changes in N
of the parameter estimates, /’s, and the predicted
amount of remaining recoverable oil for the Rimbey-
Meadowbrook data. The values considered are N =
35, 40, and 45. The value of iy was fixed at the value
in Table 4. We see that 2, (depth) is the least sen-
sitive, whereas 2; (volume) is the most sensitive. De-
spite this, the predicted amount of recoverable oil
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(volume) from the remaining pools is remarkably
stable. Table 6 considers the same type of sensitivity
analysis for changes in y. The three values consid-
ered were y X J, where vy was fixed at the value in
Table 4 and 6 = .9, 1, and 1.1. The population size
N = 40 in all three cases. The parameter estimates
['s were even more stable in this case with very small
changes. The predicted amount of recoverable oil
also exhibited the same level of stability, so the re-
sults are not very sensitive to small perturbations in
N and v in the neighborhood of the values assumed
in Table 4.

6. SUMMARY

The results in this article can be used to analyze
multivariate discovery data using a successive-sam-
pling discovery model with a given, arbitrary mea-
sure of size. We have illustrated the techniques
by applying them to oil discovery data from the
Rimbey-Meadowbrook reef play. Other areas
of potential application include software debugging
and testing for design errors in hardware reliabil-
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